秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

江蘇省2012高中數(shù)學(xué)競賽教案 第62講 多項式

上傳人:二*** 文檔編號:63829996 上傳時間:2022-03-20 格式:DOC 頁數(shù):14 大?。?.04MB
收藏 版權(quán)申訴 舉報 下載
江蘇省2012高中數(shù)學(xué)競賽教案 第62講 多項式_第1頁
第1頁 / 共14頁
江蘇省2012高中數(shù)學(xué)競賽教案 第62講 多項式_第2頁
第2頁 / 共14頁
江蘇省2012高中數(shù)學(xué)競賽教案 第62講 多項式_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

16 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2012高中數(shù)學(xué)競賽教案 第62講 多項式》由會員分享,可在線閱讀,更多相關(guān)《江蘇省2012高中數(shù)學(xué)競賽教案 第62講 多項式(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、教育資源 第62講 多項式理論 多項式理論是代數(shù)學(xué)的重要組成部分,它在理論上和方法上對現(xiàn)代數(shù)學(xué)都有深刻的影響,與多項式有關(guān)的問題除了出現(xiàn)在函數(shù)、方程、不等式等代數(shù)領(lǐng)域中,還涉及到幾何、數(shù)論等知識,是一個綜合性的工具,也是數(shù)學(xué)競賽中的熱點問題.多項式的基本理論主要包括:余數(shù)定理與因式定理;多項式恒等條件;韋達定理;插值公式等.具體如下: 1.多項式恒等: (1) 多項式恒等條件:兩個多項式相等當且僅當它們同次冪的系數(shù)相等. (2)帶余除恒等式:多項式f(x)除以多項式g(x),商式為q(x),余式為r(x),(則r(x)的次數(shù)小于g(x)的次數(shù)),則.特別是多項式f(x)除以x-a,

2、商式為g(x),余數(shù)為r,則f(x)=(x-a)g(x)+r. (3)多項式恒等定理:若有n+1個不同的x值使n次多項式f(x)與g(x)的值相同,則. 在數(shù)學(xué)競賽中,經(jīng)常用到先猜想后證明的思想:比如先找出一個n次多項式f(x)符合題意,再驗證f(x)與g(x)在n+1個不同的x值處,均有f(x)=g(x),則. 2.余數(shù)定理與因式定理: (1)余數(shù)定理:多項式f(x)除以x-a所得的余數(shù)等于f(a). (2)因式定理:多項式f(x)有一個因式x-a的充要條件是f(a)=0. (3)幾個推論: ①若f(x)為整系數(shù)多項式,則f(x)除以(x-a)所得的商也為整系數(shù)多項式,余

3、數(shù)為整數(shù). ②若f(x)為整系數(shù)多項式,a、b為不同整數(shù),則 ③f(x)除以所的的余數(shù)為. 3.代數(shù)基本定理 (1)代數(shù)基本定理:一個n次多項式在復(fù)數(shù)范圍內(nèi)至少有一個根. (2)根的個數(shù)定理:一個n次多項式在復(fù)數(shù)范圍內(nèi)有且僅有n個根. 4.韋達定理與虛根成對定理 (1)韋達定理:如果一元n次多項式的根是,那么有 …… 簡寫成. (2)復(fù)根成對定理:若實系數(shù)多項式f(x)有一個虛根那么它的共軛復(fù)數(shù)也是f(x)的根,并且和有相同重數(shù).運用時要注意必須是實系數(shù)方程. 5.拉格朗日(Lagrange)插值公式 設(shè)f(x)是一個次數(shù)不超過n的多項式,數(shù)a1,a2,…,an+1兩兩

4、不等,則 . 簡寫成f(x)=. A類例題 例1 將關(guān)于的多項式表為關(guān)于的多項式其中則 .(2005年全國聯(lián)賽一試) 分析 先利用等比數(shù)列的求和公式求出f(x)的表達式,然后用變量代換轉(zhuǎn)化為關(guān)于y的多項式,最后對它賦值即可. 解 由題設(shè)知,和式中的各項構(gòu)成首項為1,公比為的等比數(shù)列,由等比數(shù)列的求和公式,得:令得取 有 說明 賦值法在解決多項式系數(shù)之和問題中經(jīng)常被使用. 例2 在一次數(shù)學(xué)課上,老師讓同學(xué)們解一個五次方程,明明因為上課睡覺,沒有將方程抄下,到下課時,由于黑板被擦去了大半,明明僅抄到如下殘缺的方程,若該方程的五個根恰構(gòu)成等差數(shù)列,且公差,試幫明明解出該

5、方程. 分析 題目已知一個五次方程的五次項系數(shù)、四次項系數(shù)和常數(shù)項,可由韋達定理確定出方程5個根的和與積,再利用其為等差數(shù)列的特點,解方程. 解 設(shè)該方程的5個根為,則由韋達定理可得 由此得及 令,得或1. 于是或.由條件,可知. 因此這5個根為1,2,3,4,5. 說明 韋達定理給出了如果一元n次多項式方程的n個根與方程的系數(shù)的之間關(guān)系,在解決方程問題時,有著極其廣泛的應(yīng)用.運用韋達定理時,特別要注意符號不能搞反. 例3 若可被整除,求f(a). 分析 由于可被整除,故可以用待定系數(shù)法設(shè)出f(x)因式分解后的形式,利用多項式恒等條件確定p,q,a的關(guān)系,最后求出f(a

6、). 解 設(shè) 展開得 比較兩邊系數(shù)得 故. 說明 多項式恒等條件即兩個多項式相等當且僅當它們同冪次得系數(shù)相等,往往是解決多項式分解及恒等問題的重要依據(jù),常通過待定系數(shù)法實現(xiàn)轉(zhuǎn)化. 鏈接 由于題目條件f(x)可被整除可知f(x)可被 x-1,x+1整除,故可以利用因式定理確定出p,q,a之間的關(guān)系,再代入求值: 可被(x-1)(x+1)整除,∴由因式定理可知f(-1)=f(1)=0.因此得, 由①-②得故. 因式定理是處理多項式問題的常用工具.運用因式定理時,只要有f(a)=0,則f(x)必含有因式(x-a).容易看出,因式定理是余數(shù)定理的一個推廣. 情景再現(xiàn) 1.設(shè),求

7、的值為 ( )(2005年浙江省數(shù)學(xué)競賽) A. B. C. D. 2.設(shè)是關(guān)于變量x的一個恒等式,則ab的值為 ( ) A. -246 B. -210 C. 29 D. 210 3.四次多項式的四個根中有兩個根的積為-32,求實數(shù)k. B類例題 例4 已知是多項式的三個零點,試求一個以為零點的三次多項式g(x). 分析 由于原多項式和所求多項式的零點之間存在著平方關(guān)系,利

8、用韋達定理就能構(gòu)造出滿足題意的多項式g(x). 解 設(shè),則由韋達定理知 故 . 因此. 說明 利用韋達定理構(gòu)造出滿足題意的多項式g(x)是本題的關(guān)鍵. 鏈接 本題還可以用因式分解的辦法尋找兩個多項式之間的關(guān)系: 設(shè),則 例5 設(shè)a,b,c,d是4個不同實數(shù),p(x)是實系數(shù)多項式,已知①p(x)除以(x-a)的余數(shù)為a;②p(x)除以(x-b)的余數(shù)為b; ③p(x)除以(x-c)的余數(shù)為c;④p(x)除以(x-d)的余數(shù)為d. 求多項式p(x) 除以(x-a) (x-b) (x-c) (x-d)的余數(shù).(1990年意大利數(shù)學(xué)奧賽題) 分析 首先

9、利用余數(shù)定理將條件轉(zhuǎn)化,再通過構(gòu)造一個新函數(shù)F(x),使得它能被(x-a) (x-b) (x-c) (x-d)整除,再確定出F(x)與p(x)的關(guān)系. 解法一 根據(jù)余數(shù)定理,p(x)除以(x-a)的余數(shù)為p(a),故p(a)=a. 同理,p(b)=b,p(c)=c,p(d)=d.考察多項式F(x)= p(x)-x,則有F(a)=0,F(xiàn)(b)=0,F(xiàn)(c)=0,F(xiàn)(d)=0.由因式定理可知,F(xiàn)(x)含有因式(x-a) (x-b) (x-c) (x-d),而p(x) = F(x)+x,故多項式p(x) 除以(x-a) (x-b) (x-c) (x-d)的余數(shù)為x. 解法二 利用待定系數(shù)法

10、設(shè)p(x)= (x-a) (x-b) (x-c) (x-d)q(x)+r(x),其中由題設(shè)得p(a)=a,p(b)=b,p(c)=c,p(d)=d知a,b,c,d是的4個互不相同的根,但該方程是個三次方程,故m=n=l-1=t=0,即m=n=t=0,l=1.故所求余式為x. 說明 靈活運用因式定理和余數(shù)定理,并巧妙構(gòu)造多項式函數(shù)是解決本題的關(guān)鍵,而這些都可以通過仔細觀察題目條件的特點后能自然得出.本題還可以用待定系數(shù)法解決,一題多解,有利于拓寬視野,把問題看的更加透徹. 鏈接 本題有一般性的結(jié)論,這就是下述問題: 設(shè)是n個不同的實數(shù),p(x)是一個實系數(shù)多項式,已知p(x)除以的余數(shù)為

11、,則多項式p(x)除以的余數(shù)為x. 其中表示的是,為n個因式相乘. 例6 設(shè)為互不相同的兩組實數(shù),將它們按如下法則填入100×100的方格表內(nèi),即在位于第i行第j列處的方格處填入現(xiàn)知任何一列數(shù)的乘積為1,求證:任一行數(shù)的積為-1. 分析 注意到100×100的方格表內(nèi),位于第i行第j列處的方格處填入的數(shù)為,且任何一列的乘積為1,故可以構(gòu)造兩個恒等的多項式解之. 解 考察多項式 由于任何一列的乘積為1,故知是p(x)的根, 故有由多項式恒等可知 取,代入上式可得: 即故知任何一行數(shù)的乘積為-1. 說明 本題的關(guān)鍵是巧妙地構(gòu)造兩個恒等的多項式,是一利用多項式恒等定

12、理解決問題的精妙之作. 鏈接 拉格朗日插值公式的推導(dǎo)也是利用多項式恒等定理的經(jīng)典之作: 設(shè)f(x)是一個次數(shù)不超過n的多項式,數(shù)a1,a2,…,an+1兩兩不等,則 . 簡寫成. 證明:(1)存在性:令 觀察的特點,可知故 故該多項式滿足題目條件. (2)惟一性:設(shè)g(x)是一個滿足題意的n次多項式,則則由多項式恒等定理可知 故惟一性得證. 拉格朗日插值公式在數(shù)學(xué)的許多領(lǐng)域都有著廣泛的應(yīng)用,拉格朗日插值多項式的構(gòu)造是十分巧妙,值得好好領(lǐng)會和應(yīng)用,以下一例就是拉格朗日插值公式的簡單應(yīng)用. 例7 已知函數(shù)滿足則f(3)的取值范圍是

13、 ( ) A. B. C. D. 分析 由于所給函數(shù)為偶函數(shù),故有,再運用拉格朗日插值公式將f(3)表示為關(guān)于f(-1)、f(1)和f(2)的關(guān)系式即可. 解 選C.由拉格朗日插值公式,得 從而故. O x y A B 1 鏈接 本題除了用拉格朗日插值公式來處理以外,還可以用線性規(guī)劃的方法來處理,具體如下: 由得而 故問題轉(zhuǎn)化為求線性目標函數(shù)在線性約束條件下的最大值和最小值問題.先作出可行域如圖: 則點A的坐標為(0,1), 點B的坐標為(3,7), 則線性目標函數(shù)在點A處取得最小值為 在點B處取得最大

14、值為 故的取值范圍為 本題還可以利用不等式知識來處理: 又,故由不等式的性質(zhì)知 例8 是否存在二元多項式,滿足條件 (1)對任意的 (2)對于任意的c>0,存在x,y,使得 分析 本題是關(guān)于二元多項式問題,關(guān)鍵是消去一元轉(zhuǎn)化成一元多項式問題. 解 存在.取將y看成常數(shù),則關(guān)于x的二次三項式的判別式∴對所有的x,y均有 又將p(x,y)看成x的函數(shù)(y固定),則p(x,y)的值域為 因為當. 所以對于任意的c>0,存在 從而存在 情景再現(xiàn) 4.若可被整除,則m,p,q應(yīng)符合的條件是  (

15、) A. B. C. D. 5.求次數(shù)小于3的多項式f(x),使f(1)=1,f(-1)=3,f(2)=3. 6.求所有的值a,使多項式的根滿足 (奧地利數(shù)學(xué)競賽題) C類例題 例9 已知數(shù)列滿足求證:對于任何自然數(shù)n, 是x的一次多項式或零次多項式.(1986年全國聯(lián)賽一試題) 分析 由知是等差數(shù)列,則從而可將表示成的表達式,再化簡即可. 解 因為,所以數(shù)列為等差數(shù)列,設(shè)其公差為d有,從而 由二項定理,知 又因為 從而 所以 當式,P(x)為x的一次多項式,當d=0時,P(x)為零次多項式. 例10 求一切實數(shù)p,使得三次方程 的三個根均為自

16、然數(shù).(1995年全國聯(lián)賽二試題) 分析 容易看出x=1是原三次方程的一個自然數(shù)根,原方程可用綜合除法降次為① 當且僅當二次方程①的兩個根均為自然數(shù)時,原三次方程的三個根才均為自然數(shù).設(shè)方程①的兩個正整數(shù)根為u,v,則由韋達定理得從而p為正整數(shù).因此本題相當于解不定方程消去p得66(u+v)=5uv+1,由該不定方程解出u,v,再求出p=u+v即可. 解 容易看出x=1是原三次方程的一個自然數(shù)根,由綜合除法,原三次方程可降次為二次方程① 當且僅當二次方程①的兩個根均為自然數(shù)時,原三次方程的三個根才均為自然數(shù). 設(shè)方程①的兩個正整數(shù)根為由韋達定理則得故p為正整數(shù).消去p得66(u+v

17、)=5uv+1②, 由②得v(5u-66)=66u-1>0,從而5v-66>0. 對方程②兩邊乘5后,移項、分解得(5u-66)(5v-66)=19×229,其中19,229均為素數(shù),于是 或(無解) 從而得到不定方程②的唯一自然數(shù)解,u=17,v=59,這樣p=u+v=17+59=76. 所以當且僅當p=76時方程①有三個自然數(shù)根1,17,59. 說明 由于我們對三次方程的求根公式(卡當公式)不很熟悉,因此在遇到此類問題時,我們一般先用觀察法找到它的一個根,通常是整數(shù)根,再將原三次方程降次為二次方程,降次的一般用綜合除法.然后再設(shè)法處理我們熟悉的二次函數(shù)問題. 鏈接 除了將原

18、問題轉(zhuǎn)化為求解二元二次不定方程66(u+v)=5uv+1外,也可以用求根公式,從而利用判別式為完全平方數(shù)求解,其中涉及到奇偶分析.具體如下: 容易看出x=1是原三次方程的一個自然數(shù)根,由綜合除法,原三次方程可降次為二次方程① 當且僅當二次方程①的兩個根均為自然數(shù)時,原三次方程的三個根才均為自然數(shù).由韋達定理知,p為自然數(shù).顯然方程①的判別式是完全平方數(shù).設(shè),則.A,B的奇偶性相同,且均為偶數(shù)(若A,B都是奇數(shù),則矛盾).令則由及19與229的素性可得 即從而正整數(shù)p只能為76. 情景再現(xiàn) 7.求證:不能表示成的形式,其中為實系數(shù)多項式,且互質(zhì). 習題 1.已知多項式是的展開

19、式,則等于( ) A.1 B.-1 C.0 D. 2 2.滿足條件的二次函數(shù)f(x)有( ) A.0個 B.1個  C.2個 D.無窮多個 3.設(shè)一個二次三項式的完全平方展開式是那么這個二次三項式是________________________. 4.已知實數(shù)均不為0,多項式的三個根為,則 . (德國高中數(shù)學(xué)競賽題) 5.若f(x)、g(x)為兩個實系數(shù)多項式,并且可被整除,則 , . 6.當時,是某個整系數(shù)多項式的根

20、,求滿足上述條件的次數(shù)最低的首項系數(shù)為1的多項式.(1997年日本數(shù)學(xué)競賽題) 7.設(shè)若則的值為 ( ) A.8014 B.40 C.160 D.8270 8.以有理數(shù)a,b,c為根的三次多項式有  ( ) A.1個 B.2個 C.3個 D.無窮多個 9.多項式在實數(shù)范圍內(nèi)有多少個零點? 10.設(shè)都是多項式,且 求證:x-1是的公因式. 11.設(shè)

21、p(x)是2n次多項式,滿足 12.任給實多項式:.其中n為正整數(shù),系數(shù)用下面方法來確定:甲,乙兩人,從甲開始,依次輪流給出一個系數(shù)的值,最后一個系數(shù)由甲給出后,如果所得的多項式?jīng)]有實根,則甲勝;若所得的多項式有實根,則乙勝.試問不管甲如何選取系數(shù),乙必勝嗎?(2004年江蘇省數(shù)學(xué)夏令營一級教練員測試題十) 本節(jié)“情景再現(xiàn)”解答: 1.C 2.A 解 將該恒等式變形成多項式恒等,則有比較兩邊系數(shù)得. 解得.因此. 3.86 解 設(shè)多項式的四個根為則由韋達定理,得 設(shè)故 又 故 4.C 解 5. 解 由拉格朗日插值公式得.

22、 6.-9 7.解 (反證法)假設(shè)有且互質(zhì). ,又, 又 但當f(x)的次數(shù)時,恒有的次數(shù)大于的次數(shù), 為常數(shù).同理g(x)也為常數(shù),故為常數(shù),矛盾.故原命題得證. 本節(jié)“習題”解答: 1.A 2.B 3. 4.-1 5.0, 0 6. 解 記則代入方程,得 即 兩邊平方,得 故所求的多項式為 7. A 解 設(shè),則,故于是 8. C 解 由韋達定理知 . 如果a=0(或b=0)得c=0,b=0. 如果 如果a,b,c均不為零,得. 故滿足題設(shè)的多項式為. 9.1 解 顯然,x=0不是f(x

23、)=0的根.令,則 又單調(diào)遞增,且當時,,因此,恰有一個根. 10.解 設(shè) 取1的5次虛單位根 所以 即方程 故再把x=1代入所設(shè)等式,得s(1)=0.命題得證. 11.解 令又 其中 將x=2n+1代入上式,得 這表明p(x)是四次多項式, 由得 12.解 乙有必勝策略.證明如下. 在選取過程中,不管甲取了那個系數(shù),接下去,乙必取余下的一個偶數(shù)次項的系數(shù),如果已經(jīng)沒有偶數(shù)次項的系數(shù),乙才取奇數(shù)次項的系數(shù).因此當最后留下兩個系數(shù),必由乙先取.注意到乙的選系數(shù)方式以及偶項系數(shù)的總數(shù),恰好比偶項系數(shù)的總數(shù)少一個,所以最后兩個系數(shù)只能是兩個奇數(shù)項系數(shù)或者一個奇數(shù)項系數(shù),一個偶數(shù)項系數(shù),它們可設(shè)為,.這里,s可奇,也可偶.于是.其中是已經(jīng)確定的多項式. 接下來由乙來取,我們希望不管最后甲取的的值是什么,都不影響必有實根,為此,我們給出如何選取的值的方法,并證明最終所得的多項式有實根.任取,則,.為了不管如何選取,這意味著從上兩式中消去,于是有: . 注意到等式右邊和無關(guān),所以和無關(guān),又由,所以.令 ,則有 . 我們來證明必有實根.顯然.如果,則在必有實根.如果,由于,所以,因此,這證明了中必有實根.總之,必有實根.這證明了乙必勝. 教育資源

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!