《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第34講 直線與圓錐曲線的位置關(guān)系
《《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第34講 直線與圓錐曲線的位置關(guān)系》由會員分享,可在線閱讀,更多相關(guān)《《新課標(biāo)》高三數(shù)學(xué)(人教版)第一輪復(fù)習(xí)單元講座 第34講 直線與圓錐曲線的位置關(guān)系(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、普通高中課程標(biāo)準實驗教科書—數(shù)學(xué) [人教版] 高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座34)—直線與圓錐曲線的位置關(guān)系 一.課標(biāo)要求: 1.通過圓錐曲線與方程的學(xué)習(xí),進一步體會數(shù)形結(jié)合的思想; 2.掌握直線與圓錐曲線的位置關(guān)系判定及其相關(guān)問題。 二.命題走向 近幾年來直線與圓錐曲線的位置關(guān)系在高考中占據(jù)高考解答題壓軸題的位置,且選擇、填空也有涉及,有關(guān)直線與圓錐曲線的位置關(guān)系的題目可能會涉及線段中點、弦長等。分析這類問題,往往利用數(shù)形結(jié)合的思想和“設(shè)而不求”的方法,對稱的方法及韋達定理等。 預(yù)測07年高考: 1.會出現(xiàn)1道關(guān)于直線與圓錐曲線的位置關(guān)系的解答題; 2.與直線、圓錐曲線相
2、結(jié)合的綜合型考題,等軸雙曲線基本不出題,坐標(biāo)軸平移或平移化簡方程一般不出解答題,大多是以選擇題形式出現(xiàn)。 三.要點精講 1.點M(x0,y0)與圓錐曲線C:f(x,y)=0的位置關(guān)系 2.直線與圓錐曲線的位置關(guān)系 直線與圓錐曲線的位置關(guān)系,從幾何角度可分為三類:無公共點,僅有一個公共點及有兩個相異公共點。 直線與圓錐曲線的位置關(guān)系的研究方法可通過代數(shù)方法即解方程組的辦法來研究。因為方程組解的個數(shù)與交點的個數(shù)是一樣的。 直線與圓錐曲線的位置關(guān)系可分為:相交、相切、相離.對于拋物線來說,平行于對稱軸的直線與拋物線相交于一點,但并不是相切;對于雙曲線來說,平行于漸近線的直線與雙曲線只
3、有一個交點,但并不相切.這三種位置關(guān)系的判定條件可引導(dǎo)學(xué)生歸納為: 注意:直線與拋物線、雙曲線有一個公共點是直線與拋物線、雙曲線相切的必要條件,但不是充分條件. 3.直線與圓錐曲線相交的弦長公式 設(shè)直線l:y=kx+n,圓錐曲線:F(x,y)=0,它們的交點為P1 (x1,y1),P2 (x2,y2), 且由,消去y→ax2+bx+c=0(a≠0),Δ=b2 -4ac。 則弦長公式為: d====。 焦點弦長:(點是圓錐曲線上的任意一點,是焦點,是到相應(yīng)于焦點的準線的距離,是離心率)。 四.典例解析 題型1:直線與橢圓的位置關(guān)系 例1.已知橢圓:,過左焦點F作傾
4、斜角為的直線交橢圓于A、B兩點,求弦AB的長。 解析:a=3,b=1,c=2,則F(-2,0)。 由題意知:與聯(lián)立消去y得:。 設(shè)A(、B(,則是上面方程的二實根,由違達定理,,,又因為A、B、F都是直線上的點, 所以|AB|= 點評:也可讓學(xué)生利用“焦半徑”公式計算。 例2.中心在原點,一個焦點為F1(0,)的橢圓截直線所得弦的中點橫坐標(biāo)為,求橢圓的方程。 解析:設(shè)橢圓的標(biāo)準方程為,由F1(0,)得 把直線方程代入橢圓方程整理得:。 設(shè)弦的兩個端點為,則由根與系數(shù)的關(guān)系得: ,又AB的中點橫坐標(biāo)為, ,與方程聯(lián)立可解出 故所求橢圓的方程為:。 點評:根據(jù)題意,可設(shè)橢
5、圓的標(biāo)準方程,與直線方程聯(lián)立解方程組,利用韋達定理及中點坐標(biāo)公式,求出中點的橫坐標(biāo),再由F1(0,)知,c=,,最后解關(guān)于a、b的方程組即可。 例3.(06遼寧卷)直線與曲線 的公共點的個數(shù)為( ) (A)1 (B)2 (C)3 (D)4 解析:將代入得:。 ,顯然該關(guān)于的方程有兩正解,即x有四解,所以交點有4個,故選擇答案D。 點評:本題考查了方程與曲線的關(guān)系以及絕對值的變換技巧,同時對二次方程的實根分布也進行了簡單的考查。 例4.(2000上海,17)已知橢圓C的焦點分別為F1(,0)和F2(2,0
6、),長軸長為6,設(shè)直線y=x+2交橢圓C于A、B兩點,求線段AB的中點坐標(biāo)。 解析:設(shè)橢圓C的方程為, 由題意a=3,c=2,于是b=1. ∴橢圓C的方程為+y2=1. 由得10x2+36x+27=0, 因為該二次方程的判別式Δ>0,所以直線與橢圓有兩個不同的交點, 設(shè)A(x1,y1),B(x2,y2), 則x1+x2=, 故線段AB的中點坐標(biāo)為(). 點評:本題主要考查橢圓的定義標(biāo)準方程,直線與橢圓的位置關(guān)系及線段中點坐標(biāo)公式。 題型2:直線與雙曲線的位置關(guān)系 例5.(1)過點與雙曲線有且只有一個公共點的直線有幾條,分別求出它們的方程。 (2)直線與雙曲線相交于A、B
7、兩點,當(dāng)為何值時,A、B在雙曲線的同一支上?當(dāng)為何值時,A、B分別在雙曲線的兩支上? 解析:(1)解:若直線的斜率不存在時,則,此時僅有一個交點,滿足條件; 若直線的斜率存在時,設(shè)直線的方程為則, , ∴, , 當(dāng)時,方程無解,不滿足條件; 當(dāng)時,方程有一解,滿足條件; 當(dāng)時,令, 化簡得:無解,所以不滿足條件; 所以滿足條件的直線有兩條和。 (2)把代入整理得:……(1) 當(dāng)時,。 由>0得且時,方程組有兩解,直線與雙曲線有兩個交點。 若A、B在雙曲線的同一支,須>0 ,所以或。 故當(dāng)或時,A、B兩點在同一支上;當(dāng)時,A、B兩點在雙曲線的兩支上。 點評:與雙曲
8、線只有一個公共點的直線有兩種。一種是與漸近線平行的兩條與雙曲線交于一點的直線。另一種是與雙曲線相切的直線也有兩條。 例5.(1)求直線被雙曲線截得的弦長; (2)求過定點的直線被雙曲線截得的弦中點軌跡方程。 解析:由得得(*) 設(shè)方程(*)的解為,則有 得, (2)方法一:若該直線的斜率不存在時與雙曲線無交點,則設(shè)直線的方程為,它被雙曲線截得的弦為對應(yīng)的中點為, 由得(*) 設(shè)方程(*)的解為,則, ∴, 且, ∴, 得或。 方法二:設(shè)弦的兩個端點坐標(biāo)為,弦中點為,則 得:, ∴, 即, 即(圖象的一部分) 點評:(1)弦長公式;(2)
9、有關(guān)中點弦問題的兩種處理方法。 例7.過雙曲線的一焦點的直線垂直于一漸近線,且與雙曲線的兩支相交,求該雙曲線離心率的范圍。 解析:設(shè)雙曲線的方程為,,漸近線,則過的直線方程為,則, 代入得, ∴即得, ∴,即得到。 點評:直線與圓錐曲線的位置關(guān)系經(jīng)常和圓錐曲線的幾何要素建立起對應(yīng)關(guān)系,取值范圍往往與判別式的取值建立聯(lián)系。 題型3:直線與拋物線的位置關(guān)系 例8.已知拋物線方程為,直線過拋物線的焦點F且被拋物線截得的弦長為3,求p的值。 解析:設(shè)與拋物線交于 由距離公式|AB|== 由 從而由于p>0,解得 點評:方程組有兩組不同實數(shù)解或一組實數(shù)解則相交;有兩組
10、相同實數(shù)解則相切;無實數(shù)解則相離。 例9.2003上海春,4)直線y=x-1被拋物線y2=4x截得線段的中點坐標(biāo)是_____. 答案:(3,2) 解法一:設(shè)直線y=x-1與拋物線y2=4x交于A(x1,y1),B(x2,y2),其中點為P(x0,y0)。 由題意得,(x-1)2=4x,x2-6x+1=0。 ∴x0==3.y0=x0-1=2.∴P(3,2)。 解法二:y22=4x2,y12=4x1,y22-y12=4x2-4x1, =4.∴y1+y2=4,即y0=2,x0=y0+1=3。 故中點為P(3,2)。 點評:本題考查曲線的交點與方程的根的關(guān)系.同時應(yīng)注意解法一中的縱坐
11、標(biāo)與解法二中的橫坐標(biāo)的求法。 例10.(1997上海)拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊. (1)求證:直線與拋物線總有兩個交點; (2)設(shè)直線與拋物線的交點為Q、R,OQ⊥OR,求p關(guān)于m的函數(shù)f(m)的表達式; (3)(文)在(2)的條件下,若拋物線焦點F到直線x+y=m的距離為,求此直線的方程; (理)在(2)的條件下,若m變化,使得原點O到直線QR的距離不大于,求p的值的范圍. 解:(1)拋物線y2=p(x+1)的準線方程是x=-1-,直線x+y=m與x軸的交點為(m,0),由題設(shè)交點在準線右邊,得m>-1-,即4m+p
12、+4>0. 由 得x2-(2m+p)x+(m2-p)=0. 而判別式Δ=(2m+p)2-4(m2-p)=p(4m+p+4). 又p>0及4m+p+4>0,可知Δ>0. 因此,直線與拋物線總有兩個交點; (2)設(shè)Q、R兩點的坐標(biāo)分別為(x1,y1)、(x2,y2),由(1)知,x1、x2是方程x2-(2m+p)x+m2-p=0的兩根, ∴x1+x2=2m+p,x1·x2=m2-p. 由OQ⊥OR,得kOQ·kOR=-1, 即有x1x2+y1y2=0. 又Q、R為直線x+y=m上的點, 因而y1=-x1+m,y2=-x2+m. 于是x1x2+y1y2=2x1x2-m(x1+
13、x2)+m2=2(m2-p)-m(2m+p)+m2=0, ∴p=f(m)=, 由得m>-2,m≠0; (3)(文)由于拋物線y2=p(x+1)的焦點F坐標(biāo)為(-1+,0),于是有 ,即|p-4m-4|=4. 又p= ∴||=4. 解得m1=0,m2=-,m3=-4,m4=-. 但m≠0且m>-2,因而舍去m1、m2、m3,故所求直線方程為3x+3y+4=0. (理)解法一:由于原點O到直線x+y=m的距離不大于,于是 ,∴|m|≤1. 由(2),知m>-2且m≠0, 故m∈[-1,0)∪(0,1]. 由(2),知f(m)==(m+2)+-4, 當(dāng)m∈[-1,0)時,任
14、取m1、m2,0>m1>m2≥-1,則 f(m1)-f(m2)=(m1-m2)+() =(m1-m2)[1-]. 由0>m1>m2≥-1,知0<(m1+2)(m2+2)<4,1-<0. 又由m1-m2>0知f(m1)<f(m2)因而f(m)為減函數(shù). 可見,當(dāng)m∈[-1,0)時,p∈(0,1]. 同樣可證,當(dāng)m∈(0,1]時,f(m)為增函數(shù),從而p∈(0,]. 解法二:由解法一知,m∈[-1,0)∪(0,1].由(2)知 p=f(m)=. 設(shè)t=,g(t)=t+2t2,則t∈(-∞,-1]∪[1,+∞),又 g(t)=2t2+t=2(t+)2-. ∴當(dāng)t∈(-∞,-1]
15、時,g(t)為減函數(shù),g(t)∈[1,+∞). 當(dāng)t∈[1,+∞)時,g(t)為增函數(shù),g(t)∈[3,+∞). 因此,當(dāng)m∈[-1,0]時,t∈(-∞,-1],p=∈(0,1]; 當(dāng)m∈(0,1]時,t∈[1,+∞),p∈(0,]. 點評:本題考查拋物線的性質(zhì)與方程,拋物線與直線的位置關(guān)系,點到直線的距離,函數(shù)與不等式的知識,以及解決綜合問題的能力。 例11.(06山東卷)已知拋物線y2=4x,過點P(4,0)的直線與拋物線相交于A(x1,y1),B(x2,y2)兩點,則y12+y22的最小值是 。 解析:顯然30,又=4()38,當(dāng)且僅當(dāng)時取等號,所以所求的值
16、為32。 點評:該題考查直線與拋物線位置關(guān)系下的部分求值問題,結(jié)合基本不等式求得最終結(jié)果。 五.思維總結(jié) 1.加強直線與圓錐曲線的位置關(guān)系問題的復(fù)習(xí) 由于直線與圓錐曲線的位置關(guān)系一直為高考的熱點。這類問題常涉及到圓錐曲線的性質(zhì)和直線的基本知識點、線段的中點、弦長、垂直問題,因此分析問題時利用數(shù)形結(jié)合思想來設(shè)。而不求法與弦長公式及韋達定理聯(lián)系去解決。這樣就加強了對數(shù)學(xué)各種能力的考查; 2.關(guān)于直線與圓錐曲線相交弦則結(jié)合韋達定理采用設(shè)而不求法。利用引入一個參數(shù)表示動點的坐標(biāo)x、y,間接把它們聯(lián)系起來,減少變量、未知量采用參數(shù)法。有些題目還常用它們與平面幾何的關(guān)系,利用平面幾何知識會化難為
17、易,化繁為簡,收到意想不到的解題效果; 3.直線與圓錐曲線有無公共點或有幾個公共點的問題,實際上是研究它們的方程組成的方程是否有實數(shù)解成實數(shù)解的個數(shù)問題,此時要注意用好分類討論和數(shù)形結(jié)合的思想方法; 4.當(dāng)直線與圓錐曲線相交時 涉及弦長問題,常用“韋達定理法”設(shè)而不求計算弦長(即應(yīng)用弦長公式);涉及弦長的中點問題,常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化。同時還應(yīng)充分挖掘題目的隱含條件,尋找量與量間的關(guān)系靈活轉(zhuǎn)化,往往就能事半功倍; 普通高中課程標(biāo)準實驗教科書—數(shù)學(xué) [人教版] 高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座29)—等比數(shù)列 一.課標(biāo)要求:
18、 1.通過實例,理解等比數(shù)列的概念; 2.探索并掌握等差數(shù)列的通項公式與前n項和的公式; 3.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。體會等比數(shù)列與指數(shù)函數(shù)的關(guān)系。 二.命題走向 等比數(shù)列與等差數(shù)列同樣在高考中占有重要的地位,是高考出題的重點??陀^性的試題考察等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等基礎(chǔ)知識和基本性質(zhì)的靈活應(yīng)用,對基本的運算要求比較高,解答題大多以數(shù)列知識為工具。 預(yù)測07年高考對本講的考察為: (1)題型以等比數(shù)列的公式、性質(zhì)的靈活應(yīng)用為主的1~2道客觀題目; (2)關(guān)于等比數(shù)列的實際應(yīng)用問題或知識交匯題的解答題也是重點; (
19、3)解決問題時注意數(shù)學(xué)思想的應(yīng)用,象通過逆推思想、函數(shù)與方程、歸納猜想、等價轉(zhuǎn)化、分類討論等,它將能靈活考察考生運用數(shù)學(xué)知識分析問題和解決問題的能力。 三.要點精講 1.等比數(shù)列定義 一般地,如果一個數(shù)列從第二項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比;公比通常用字母表示,即::數(shù)列對于數(shù)列(1)(2)(3)都是等比數(shù)列,它們的公比依次是2,5,。(注意:“從第二項起”、“常數(shù)”、等比數(shù)列的公比和項都不為零) 2.等比數(shù)列通項公式為:。 說明:(1)由等比數(shù)列的通項公式可以知道:當(dāng)公比時該數(shù)列既是等比數(shù)列也是等差數(shù)列;(2)等比
20、數(shù)列的通項公式知:若為等比數(shù)列,則。 3.等比中項 如果在中間插入一個數(shù),使成等比數(shù)列,那么叫做的等比中項(兩個符號相同的非零實數(shù),都有兩個等比中項)。 4.等比數(shù)列前n項和公式 一般地,設(shè)等比數(shù)列的前n項和是,當(dāng)時, 或;當(dāng)q=1時,(錯位相減法)。 說明:(1)和各已知三個可求第四個;(2)注意求和公式中是,通項公式中是不要混淆;(3)應(yīng)用求和公式時,必要時應(yīng)討論的情況。 四.典例解析 題型1:等比數(shù)列的概念 例1.“公差為0的等差數(shù)列是等比數(shù)列”;“公比為的等比數(shù)列一定是遞減數(shù)列”;“a,b,c三數(shù)成等比數(shù)列的充要條件是b2=ac”;“a,b,c三數(shù)成等差數(shù)列的充要條件是
21、2b=a+c”,以上四個命題中,正確的有( )
A.1個 B.2個 C.3個 D.4個
解析:四個命題中只有最后一個是真命題。
命題1中未考慮各項都為0的等差數(shù)列不是等比數(shù)列;
命題2中可知an+1=an×,an+1
22、等差數(shù)列、等比數(shù)列的重要結(jié)論。 例2.命題1:若數(shù)列{an}的前n項和Sn=an+b(a≠1),則數(shù)列{an}是等比數(shù)列; 命題2:若數(shù)列{an}的前n項和Sn=an2+bn+c(a≠0),則數(shù)列{an}是等差數(shù)列; 命題3:若數(shù)列{an}的前n項和Sn=na-n,則數(shù)列{an}既是等差數(shù)列,又是等比數(shù)列;上述三個命題中,真命題有( ) A.0個 B.1個 C.2個 D.3個 解析: 由命題1得,a1=a+b,當(dāng)n≥2時,an=Sn-Sn-1=(a-1)·an-1。若{an}是等比數(shù)列,則=a,即=a,所以只有當(dāng)b=-1且a≠0時,此數(shù)列才是等
23、比數(shù)列。 由命題2得,a1=a+b+c,當(dāng)n≥2時,an=Sn-Sn-1=2na+b-a,若{an}是等差數(shù)列,則a2-a1=2a,即2a-c=2a,所以只有當(dāng)c=0時,數(shù)列{an}才是等差數(shù)列。 由命題3得,a1=a-1,當(dāng)n≥2時,an=Sn-Sn-1=a-1,顯然{an}是一個常數(shù)列,即公差為0的等差數(shù)列,因此只有當(dāng)a-1≠0;即a≠1時數(shù)列{an}才又是等比數(shù)列。 點評:等比數(shù)列中通項與求和公式間有很大的聯(lián)系,上述三個命題均涉及到Sn與an的關(guān)系,它們是an=,正確判斷數(shù)列{an}是等差數(shù)列或等比數(shù)列,都必須用上述關(guān)系式,尤其注意首項與其他各項的關(guān)系。上述三個命題都不是真命題,選
24、擇A。 題型2:等比數(shù)列的判定 例3.(2000全國理,20)(Ⅰ)已知數(shù)列{cn},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;(Ⅱ)設(shè){an}、{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列。 解析:(Ⅰ)解:因為{cn+1-pcn}是等比數(shù)列, 故有:(cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1), 將cn=2n+3n代入上式,得: [2n+1+3n+1-p(2n+3n)]2=[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)], 即[(2-p)2n+(
25、3-p)3n]2 =[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1], 整理得(2-p)(3-p)·2n·3n=0,解得p=2或p=3。 (Ⅱ)證明:設(shè){an}、{bn}的公比分別為p、q,p≠q,cn=an+bn。 為證{cn}不是等比數(shù)列只需證c22≠c1·c3。 事實上,c22=(a1p+b1q)2=a12p2+b12q2+2a1b1pq, c1·c3=(a1+b1)(a1p2+b1q2)=a12p2+b12q2+a1b1(p2+q2), 由于p≠q,p2+q2>2pq,又a1、b1不為零, 因此c22≠c1·c3,故{cn}不是等比數(shù)
26、列。 點評:本題主要考查等比數(shù)列的概念和基本性質(zhì),推理和運算能力。 例4.(2003京春,21)如圖3—1,在邊長為l的等邊△ABC中,圓O1為△ABC的圖3—1 內(nèi)切圓,圓O2與圓O1外切,且與AB,BC相切,…,圓On+1與圓On外切,且與AB、BC相切,如此無限繼續(xù)下去.記圓On的面積為an(n∈N*),證明{an}是等比數(shù)列; 證明:記rn為圓On的半徑,則r1=tan30°=。=sin30°=,所以rn=rn-1(n≥2),于是a1=πr12=,故{an}成等比數(shù)列。 點評:該題考察實際問題的判定,需要對實際問題情景進行分析,最終對應(yīng)數(shù)值關(guān)系建立模型加以解析。 題型3:等
27、比數(shù)列的通項公式及應(yīng)用 例5.一個等比數(shù)列有三項,如果把第二項加上4,那么所得的三項就成為等差數(shù)列,如果再把這個等差數(shù)列的第三項加上32,那么所得的三項又成為等比數(shù)列,求原來的等比數(shù)列。 解析:設(shè)所求的等比數(shù)列為a,aq,aq2; 則2(aq+4)=a+aq2,且(aq+4)2=a(aq2+32); 解得a=2,q=3或a=,q=-5; 故所求的等比數(shù)列為2,6,18或,-,。 點評:第一種解法利用等比數(shù)列的基本量,先求公比,后求其它量,這是解等差數(shù)列、等比數(shù)列的常用方法,其優(yōu)點是思路簡單、實用,缺點是有時計算較繁。 例6.(2006年陜西卷)已知正項數(shù)列,其前項和滿足且成等比數(shù)
28、列,求數(shù)列的通項 解析:∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6,解之得a1=2或a1=3。 又10Sn-1=an-12+5an-1+6(n≥2),② 由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0 ∵an+an-1>0 , ∴an-an-1=5 (n≥2)。 當(dāng)a1=3時,a3=13,a15=73,a1, a3,a15不成等比數(shù)列 ∴a1≠3; 當(dāng)a1=2時,,a3=12, a15=72,有 a32=a1a15 , ∴a1=2, ∴an=5n-3。 點評:該題涉及等比數(shù)列的
29、求和公式與等比數(shù)列通項之間的關(guān)系,最終求得結(jié)果。 題型4:等比數(shù)列的求和公式及應(yīng)用 例7.(1)(2006年遼寧卷)在等比數(shù)列中,,前項和為,若數(shù)列也是等比數(shù)列,則等于( ) A. B. C. D. (2)(2006年北京卷)設(shè),則等于( ) A. B. C. D. (3)(1996全國文,21)設(shè)等比數(shù)列{an}的前n項和為Sn,若S3+S6=2S9,求數(shù)列的公比q;解析:(1)因數(shù)列為等比,則,因數(shù)列也是等比數(shù)列, 則 即,所以,故選擇答案C。 (2)D; (3)解:若q=1,則有S3=3a1,S6=6a1,S9
30、=9a1。 因a1≠0,得S3+S6≠2S9,顯然q=1與題設(shè)矛盾,故q≠1。 由S3+S6=2S9,得,整理得q3(2q6-q3-1)=0,由q≠0,得2q6-q3-1=0,從而(2q3+1)(q3-1)=0,因q3≠1,故q3=-,所以q=-。 點評:對于等比數(shù)列求和問題要先分清數(shù)列的通項公式,對應(yīng)好首項和公比求出最終結(jié)果即可。 例8.(1)(2002江蘇,18)設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列,a1=b1=1,a2+a4=b3,b2b4=a3.分別求出{an}及{bn}的前10項的和S10及T10; (2)(2001全國春季北京、安徽,20)在1與2之間插入n個正數(shù)a1
31、,a2,a3……,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,……,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3……an,Bn=b1+b2+b3+……+bn. (Ⅰ)求數(shù)列{An}和{Bn}的通項; (Ⅱ)當(dāng)n≥7時,比較An與Bn的大小,并證明你的結(jié)論。 (3)(2002天津理,22)已知{an}是由非負整數(shù)組成的數(shù)列,滿足a1=0,a2=3, an+1an=(an-1+2)(an-2+2),n=3,4,5,…. (Ⅰ)求a3; (Ⅱ)證明an=an-2+2,n=3,4,5,…; (Ⅲ)求{an}的通項公式及其前n項和Sn。 解析:(1
32、)∵{an}為等差數(shù)列,{bn}為等比數(shù)列, ∴a2+a4=2a3,b2b4=b32. 已知a2+a4=b3,b2b4=a3, ∴b3=2a3,a3=b32. 得 b3=2b32. ∵b3≠0 ∴b3=,a3=. 由a1=1,a3=知{an}的公差為d=, ∴S10=10a1+. 由b1=1,b3=知{bn}的公比為q=或q=. 當(dāng)q=時,, 當(dāng)q=時,。 (2)(Ⅰ)設(shè)公比為q,公差為d,等比數(shù)列1,a1,a2,……,an,2,等差數(shù)列1,b1,b2,……,bn,2。 則A1=a1=1·q A2=1·q·1·q2 A3=1·q·1·q2·1·q3 又∵an+2
33、=1·qn+1=2得qn+1=2, An=q·q2…qn=q(n=1,2,3…) 又∵bn+2=1+(n+1)d=2 ∴(n+1)d=1 B1=b1=1+d B2=b2+b1=1+d+1+2d Bn=1+d+…+1+nd=n (Ⅱ)An>Bn,當(dāng)n≥7時 證明:當(dāng)n=7時,23.5=8·=An Bn=×7,∴An>Bn 設(shè)當(dāng)n=k時,An>Bn,則當(dāng)n=k+1時, 又∵Ak+1=· 且Ak>Bk ∴Ak+1>·k ∴Ak+1-Bk+1> 又∵k=8,9,10… ∴Ak+1-Bk+1>0,綜上所述,An>Bn成立. (3)(Ⅰ)解:由題設(shè)得a3a4=10,且a
34、3、a4均為非負整數(shù),所以a3的可能的值為1,2,5,10. 若a3=1,則a4=10,a5=,與題設(shè)矛盾. 若a3=5,則a4=2,a5=,與題設(shè)矛盾. 若a3=10,則a4=1,a5=60,a6=,與題設(shè)矛盾. 所以a3=2. (Ⅱ)用數(shù)學(xué)歸納法證明: ①當(dāng)n=3,a3=a1+2,等式成立; ②假設(shè)當(dāng)n=k(k≥3)時等式成立,即ak=ak-2+2,由題設(shè)ak+1ak=(ak-1+2)·(ak-2+2),因為ak=ak-2+2≠0,所以ak+1=ak-1+2, 也就是說,當(dāng)n=k+1時,等式ak+1=ak-1+2成立; 根據(jù)①和②,對于所有n≥3,有an+1=an-1+2
35、。 (Ⅲ)解:由a2k-1=a2(k-1)-1+2,a1=0,及a2k=a2(k-1)+2,a2=3得a2k-1=2(k-1),a2k=2k+1,k=1,2,3,…,即an=n+(-1)n,n=1,2,3,…。 所以Sn= 點評:本小題主要考查數(shù)列與等差數(shù)列前n項和等基礎(chǔ)知識,以及準確表述,分析和解決問題的能力。 題型5:等比數(shù)列的性質(zhì) 例9.(1)(2005江蘇3)在各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=( ) (A)33 (B)72 (C)84 (D)189 (2)(2000上海,
36、12)在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N成立.類比上述性質(zhì),相應(yīng)地:在等比數(shù)列{bn}中,若b9=1,則有等式 成立。 解析:(1)答案:C;解:設(shè)等比數(shù)列{an}的公比為q(q>0),由題意得:a1+a2+a3=21,即3+3q+3q2=21,q2+q-6=0,求得q=2(q=-3舍去),所以a3+a4+a5=q2(a1+a2+a3)=4故選C。 (2)答案:b1b2…bn=b1b2…b17-n(n<17,n∈N*); 解:在等差數(shù)列{an}中,由a10=0,得a1+a19=a2+a18=…=an+a2
37、0-n=an+1+a19-n=2a10=0, 所以a1+a2+…+an+…+a19=0,即a1+a2+…+an=-a19-a18-…-an+1, 又∵a1=-a19,a2=-a18,…,a19-n=-an+1 ∴a1+a2+…+an=-a19-a18-…-an+1=a1+a2+…+a19-n, 若a9=0,同理可得a1+a2+…+an=a1+a2+a17-n, 相應(yīng)地等比數(shù)列{bn}中,則可得:b1b2…bn=b1b2…b17-n(n<17,n∈N*)。 點評:本題考查了等比數(shù)列的相關(guān)概念及其有關(guān)計算能力。 例10.(1)設(shè)首項為正數(shù)的等比數(shù)列,它的前n項和為80,前2n項和為6
38、560,且前n項中數(shù)值最大的項為54,求此數(shù)列的首項和公比q。 (2)在和之間插入n個正數(shù),使這個數(shù)依次成等比數(shù)列,求所插入的n個數(shù)之積。 (3)設(shè)等比數(shù)列{an}的各項均為正數(shù),項數(shù)是偶數(shù),它的所有項的和等于偶數(shù)項和的4倍,且第二項與第四項的積是第3項與第4項和的9倍,問數(shù)列{lgan}的前多少項和最大?(lg2=0 3,lg3=0.4) 解析:(1)設(shè)等比數(shù)列{an}的前n項和為Sn,依題意設(shè):a1>0,Sn=80 ,S2n=6560。 ∵S2n≠2Sn ,∴q≠1; 從而 =80,且=6560。 兩式相除得1+qn=82 ,即qn=81。 ∴a1=q-1>0 即q>1,
39、從而等比數(shù)列{an}為遞增數(shù)列,故前n項中數(shù)值最大的項為第n項。 ∴a1qn-1=54,從而(q-1)qn-1=qn-qn-1=54。 ∴qn-1=81-54=27 ∴q==3。 ∴a1=q-1=2 故此數(shù)列的首為2,公比為3。 (2)解法1:設(shè)插入的n個數(shù)為,且公比為q, 則 。 解法2:設(shè)插入的n個數(shù)為, 。 (3)解法一 設(shè)公比為q,項數(shù)為2m,m∈N*, 依題意有:, 化簡得, 設(shè)數(shù)列{lgan}前n項和為Sn, 則Sn=lga1+lga1q2+…+lga1qn-1=lga1n·q1+2+…+(n-1) =nlga1+n(n-1)·lgq
40、=n(2lg2+lg3)-n(n-1)lg3 =(-)·n2+(2lg2+lg3)·n 可見,當(dāng)n=時,Sn最大, 而=5,故{lgan}的前5項和最大, 解法二 接前,,于是lgan=lg[108()n-1]=lg108+(n-1)lg, ∴數(shù)列{lgan}是以lg108為首項,以lg為公差的等差數(shù)列, 令lgan≥0,得2lg2-(n-4)lg3≥0, ∴n≤=5.5, 由于n∈N*,可見數(shù)列{lgan}的前5項和最大。 點評:第一種解法利用等比數(shù)列的基本量,先求公比,后求其它量,這是解等差數(shù)列、等比數(shù)列的常用方法,其優(yōu)點是思路簡單、實用,缺點是有時計算較繁;第二種解法
41、利用等比數(shù)列的性質(zhì),與“首末項等距”的兩項積相等,這在解題中常用到。 題型6:等差、等比綜合問題 例11.(2006年廣東卷)已知公比為的無窮等比數(shù)列各項的和為9,無窮等比數(shù)列各項的和為。 (Ⅰ)求數(shù)列的首項和公比; (Ⅱ)對給定的,設(shè)是首項為,公差為的等差數(shù)列.求數(shù)列的前10項之和。 解析:(Ⅰ)依題意可知:, (Ⅱ)由(Ⅰ)知,,所以數(shù)列的的首項為,公差,,即數(shù)列的前10項之和為155。 點評:對于出現(xiàn)等差、等比數(shù)列的綜合問題,一定要區(qū)分開各自的公式,不要混淆。 五.思維總結(jié) 1.等比數(shù)列的知識要點(可類比等差數(shù)列學(xué)習(xí)) (1)掌握等比數(shù)列定義=q(常數(shù))(nN),同樣
42、是證明一個數(shù)列是等比數(shù)列的依據(jù),也可由an·an+2=來判斷; (2)等比數(shù)列的通項公式為an=a1·qn-1; (3)對于G 是a、b 的等差中項,則G2=ab,G=±; (4)特別要注意等比數(shù)列前n 項和公式應(yīng)分為q=1與q≠1兩類,當(dāng)q=1時,Sn=na1,當(dāng)q≠1時,Sn=,Sn=。 2.等比數(shù)列的判定方法 ①定義法:對于數(shù)列,若,則數(shù)列是等比數(shù)列; ②等比中項:對于數(shù)列,若,則數(shù)列是等比數(shù)列。 3.等比數(shù)列的性質(zhì) ①等比數(shù)列任意兩項間的關(guān)系:如果是等比數(shù)列的第項,是等差數(shù)列的第項,且,公比為,則有; ②對于等比數(shù)列,若,則,也就是:,如圖所示:。 ③若數(shù)列是等比數(shù)列,是其前n項的和,,那么,,成等比數(shù)列。 如下圖所示: 第 22 頁 共 22 頁
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案