秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新編新課標(biāo)高考數(shù)學(xué)二輪復(fù)習(xí) 專題四數(shù)列 專題能力訓(xùn)練11等差數(shù)列與等比數(shù)列理

上傳人:仙*** 文檔編號(hào):65396130 上傳時(shí)間:2022-03-23 格式:DOC 頁數(shù):8 大?。?.74MB
收藏 版權(quán)申訴 舉報(bào) 下載
新編新課標(biāo)高考數(shù)學(xué)二輪復(fù)習(xí) 專題四數(shù)列 專題能力訓(xùn)練11等差數(shù)列與等比數(shù)列理_第1頁
第1頁 / 共8頁
新編新課標(biāo)高考數(shù)學(xué)二輪復(fù)習(xí) 專題四數(shù)列 專題能力訓(xùn)練11等差數(shù)列與等比數(shù)列理_第2頁
第2頁 / 共8頁
新編新課標(biāo)高考數(shù)學(xué)二輪復(fù)習(xí) 專題四數(shù)列 專題能力訓(xùn)練11等差數(shù)列與等比數(shù)列理_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編新課標(biāo)高考數(shù)學(xué)二輪復(fù)習(xí) 專題四數(shù)列 專題能力訓(xùn)練11等差數(shù)列與等比數(shù)列理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編新課標(biāo)高考數(shù)學(xué)二輪復(fù)習(xí) 專題四數(shù)列 專題能力訓(xùn)練11等差數(shù)列與等比數(shù)列理(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 能力突破訓(xùn)練 1.(2017甘肅肅南???在等差數(shù)列{an}中,a4+a10+a16=30,則a18-2a14的值為(  )                  A.20 B.-20 C.10 D.-10 2.(2017貴州黔東南州模擬)在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若log2(a2·a3·a5·a7·a8)=5,則a1·a9= (  ) A.4 B.5 C.2 D.25 3.設(shè){an}是等比數(shù)列,Sn是{an}的前n項(xiàng)和.對(duì)任意正整數(shù)n,有an+2an+1+an+2=0,又a1=2,則S101的值為(  ) A

2、.2 B.200 C.-2 D.0 4.已知{an}是等差數(shù)列,公差d不為零,前n項(xiàng)和是Sn,若a3,a4,a8成等比數(shù)列,則(  ) A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 5.(2017廣西南寧適應(yīng)性測(cè)試)已知數(shù)列{an}滿足an+1an+1+1=12,且a2=2,則a4等于(  ) A.-12 B.23 C.12 D.11 6.(2017三湘名校聯(lián)盟聯(lián)考三)已知各項(xiàng)均為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=40,則a3·a8的最大值為     .? 7.設(shè)等比數(shù)列{an}滿足a1+a3=10,

3、a2+a4=5,則a1a2…an的最大值為     .? 8.設(shè)x,y,z是實(shí)數(shù),若9x,12y,15z成等比數(shù)列,且1x,1y,1z成等差數(shù)列,則xz+zx=     .? 9.已知Sn為數(shù)列{an}的前n項(xiàng)和,且a2+S2=31,an+1=3an-2n(n∈N*). (1)求證:{an-2n}為等比數(shù)列; (2)求數(shù)列{an}的前n項(xiàng)和Sn. 10.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=λSn-1,其中λ為常數(shù). (1)證明:an+2-an=λ; (2)是否存在λ,使得{an}為等差數(shù)列?并說明理由.

4、 11.已知數(shù)列{an}是等比數(shù)列.設(shè)a2=2,a5=16. (1)若a1+a2+…+a2n=t(a12+a22+…+an2),n∈N*,求實(shí)數(shù)t的值; (2)若在1a1與1a4之間插入k個(gè)數(shù)b1,b2,…,bk,使得1a1,b1,b2,…,bk,1a4,1a5成等差數(shù)列,求k的值. 思維提升訓(xùn)練 12.(2017全國Ⅰ,理12)幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問

5、題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是(  ) A.440 B.330 C.220 D.110 13.若數(shù)列{an}為等比數(shù)列,且a1=1,q=2,則Tn=1a1a2+1a2a3+…+1anan+1等于(  ) A.1-14n B.231-14n C.1-12n D.231-12n 14.已知等比數(shù)列{an}的首項(xiàng)為43,公比為-13,其前n項(xiàng)和為Sn,若A≤S

6、n-1Sn≤B對(duì)n∈N*恒成立,則B-A的最小值為     .? 15.無窮數(shù)列{an}由k個(gè)不同的數(shù)組成,Sn為{an}的前n項(xiàng)和,若對(duì)任意n∈N*,Sn∈{2,3},則k的最大值為     .? 16.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6. (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列1bn的前n項(xiàng)和. 17.若數(shù)列{an}是公差為正數(shù)的等差數(shù)列,且對(duì)任意n∈N*有an·Sn=2n3-n2. (1)求數(shù)列{an}的通項(xiàng)公式. (2)是否存在數(shù)列{bn

7、},使得數(shù)列{anbn}的前n項(xiàng)和為An=5+(2n-3)2n-1(n∈N*)?若存在,求出數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn;若不存在,請(qǐng)說明理由. 參考答案 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 能力突破訓(xùn)練 1.D 解析對(duì)題目中下標(biāo)數(shù)值仔細(xì)觀察,有a4+a10+a16=30?3a10=30,a10=10,所以a18-2a14=-a10=-10.故選D. 2.A 解析由題意得log2(a2·a3·a5·a7·a8)=log2a55=5log2a5=5,所以a5=2.所以a1·a9=a52=4.故選A. 3.A 解析設(shè)公比為q,∵a

8、n+2an+1+an+2=0,∴a1+2a2+a3=0,∴a1+2a1q+a1q2=0,∴q2+2q+1=0,∴q=-1.又a1=2,∴S101=a1(1-q101)1-q=2[1-(-1)101]1+1=2. 4.B 解析設(shè){an}的首項(xiàng)為a1,公差為d,則a3=a1+2d,a4=a1+3d,a8=a1+7d. ∵a3,a4,a8成等比數(shù)列,∴(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0. ∵d≠0, ∴a1d=-53d2<0,且a1=-53d. ∵dS4=4d(a1+a4)2=2d(2a1+3d)=-23d2<0,故選B. 5.D 解析由已知得an+1

9、+1an+1=2,則{an+1}是公比為2的等比數(shù)列,所以a4+1=(a2+1)·22=12.所以a4=11.故選D. 6.16 解析S10=10(a1+a10)2=40?a1+a10=a3+a8=8, a3·a8≤a3+a822=822=16,當(dāng)且僅當(dāng)a3=a8=4時(shí)取等號(hào). 7.64 解析由已知a1+a3=10,a2+a4=a1q+a3q=5, 兩式相除得a1+a3q(a1+a3)=105, 解得q=12,a1=8, 所以a1a2…an=8n·121+2+…+(n-1)=2-12n2+7n2,拋物線f(n)=-12n2+72n的對(duì)稱軸為n=-722×-12=3.5, 又n∈N

10、*,所以當(dāng)n=3或4時(shí),a1a2…an取最大值為2-12×32+7×32=26=64. 8.3415 解析由題意知(12y)2=9x×15z,2y=1x+1z, 解得xz=1229×15y2=1615y2,x+z=3215y, 從而xz+zx=x2+z2xz=(x+z)2-2xzxz=(x+z)2xz-2=32152y21615y2-2=3415. 9.(1)證明由an+1=3an-2n可得 an+1-2n+1=3an-2n-2n+1=3an-3·2n=3(an-2n). 又a2=3a1-2,則S2=a1+a2=4a1-2, 得a2+S2=7a1-4=31,得a1=5,則a1-2

11、1=3≠0. 故{an-2n}為等比數(shù)列. (2)解由(1)可知an-2n=3n-1(a1-2)=3n,∴an=2n+3n, ∴Sn=2(1-2n)1-2+3(1-3n)1-3=2n+1+3n+12-72. 10.(1)證明由題設(shè),anan+1=λSn-1,an+1an+2=λSn+1-1, 兩式相減,得an+1(an+2-an)=λan+1. 因?yàn)閍n+1≠0,所以an+2-an=λ. (2)解由a1=1,a1a2=λS1-1,得a2=λ-1. 由(1)知,a3=λ+1. 令2a2=a1+a3,解得λ=4.故an+2-an=4. 由此可得{a2n-1}是首項(xiàng)為1,公差為4

12、的等差數(shù)列,a2n-1=4n-3;{a2n}是首項(xiàng)為3,公差為4的等差數(shù)列,a2n=4n-1.所以an=2n-1,an+1-an=2. 因此存在λ=4,使得數(shù)列{an}為等差數(shù)列. 11.解設(shè)等比數(shù)列{an}的公比為q,由a2=2,a5=16,得q=2,a1=1. (1)∵a1+a2+…+a2n=t(a12+a22+…+an2), ∴a1(1-q2n)1-q=t·a12(1-q2n)1-q2,即1-22n1-2=t·1-22n1-4對(duì)n∈N*都成立,∴t=3. (2)∵1a1=1,1a4=18,1a5=116, 且1a1,b1,b2,…,bk,1a4,1a5成等差數(shù)列, ∴公差d

13、=1a5-1a4=-116,且1a4-1a1=(k+1)d, 即18-1=(k+1)×-116,解得k=13. 思維提升訓(xùn)練 12.A 解析設(shè)數(shù)列的首項(xiàng)為第1組,接下來兩項(xiàng)為第2組,再接下來三項(xiàng)為第3組,以此類推,設(shè)第n組的項(xiàng)數(shù)為n,則前n組的項(xiàng)數(shù)和為n(1+n)2.第n組的和為1-2n1-2=2n-1,前n組總共的和為2(1-2n)1-2-n=2n+1-2-n. 由題意,N>100,令n(1+n)2>100,得n≥14且n∈N*,即N出現(xiàn)在第13組之后.若要使最小整數(shù)N滿足:N>100且前N項(xiàng)和為2的整數(shù)冪,則SN-Sn(1+n)2應(yīng)與-2-n互為相反數(shù),即2k-1=2+n(k∈N*

14、,n≥14),所以k=log2(n+3),解得n=29,k=5. 所以N=29×(1+29)2+5=440,故選A. 13.B 解析因?yàn)閍n=1×2n-1=2n-1,所以anan+1=2n-1·2n=22n-1=2×4n-1,所以1anan+1=12×14n-1. 所以1anan+1是等比數(shù)列. 故Tn=1a1a2+1a2a3+…+1anan+1=12×1×1-14n1-14=231-14n. 14.5972 解析易得Sn=1--13n∈89,1∪1,43, 因?yàn)閥=Sn-1Sn在89,43上單調(diào)遞增(y≠0), 所以y∈-1772,712?[A,B],因此B-A的最小值為712

15、--1772=5972. 15.4 解析要滿足數(shù)列中的條件,涉及最多的項(xiàng)的數(shù)列可以為2,1,-1,0,0,0,…,所以最多由4個(gè)不同的數(shù)組成. 16.解(1)設(shè)數(shù)列{an}的公比為q. 由a32=9a2a6得a32=9a42,所以q2=19. 由條件可知q>0,故q=13. 由2a1+3a2=1得2a1+3a1q=1,所以a1=13. 故數(shù)列{an}的通項(xiàng)公式為an=13n. (2)bn=log3a1+log3a2+…+log3an =-(1+2+…+n)=-n(n+1)2. 故1bn=-2n(n+1)=-21n-1n+1, 1b1+1b2+…+1bn =-21-12+1

16、2-13+…+1n-1n+1=-2nn+1. 所以數(shù)列1bn的前n項(xiàng)和為-2nn+1. 17.解(1)設(shè)等差數(shù)列{an}的公差為d,則d>0, an=dn+(a1-d),Sn=12dn2+a1-12dn. 對(duì)任意n∈N*,恒有 an·Sn=2n3-n2,則[dn+(a1-d)]·12dn2+a1-12dn=2n3-n2, 即[dn+(a1-d)]·12dn+a1-12d=2n2-n. ∴12d2=2,12d(a1-d)+da1-12d=-1,(a1-d)a1-12d=0. ∵d>0,∴a1=1,d=2,∴an=2n-1. (2)∵數(shù)列{anbn}的前n項(xiàng)和為An=5+(2n-3)·2n-1(n∈N*), ∴當(dāng)n=1時(shí),a1b1=A1=4,∴b1=4, 當(dāng)n≥2時(shí),anbn=An-An-1=5+(2n-3)2n-1-[5+(2n-5)2n-2]=(2n-1)2n-2. ∴bn=2n-2.假設(shè)存在數(shù)列{bn}滿足題設(shè),且數(shù)列{bn}的通項(xiàng)公式bn=4,n=1,2n-2,n≥2, ∴T1=4,當(dāng)n≥2時(shí),Tn=4+1-2n-11-2=2n-1+3,當(dāng)n=1時(shí)也適合, ∴數(shù)列{bn}的前n項(xiàng)和為Tn=2n-1+3.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!