《高考數(shù)學(xué) 第五章第三節(jié) 等比數(shù)列及其前n項(xiàng)和課件 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 第五章第三節(jié) 等比數(shù)列及其前n項(xiàng)和課件 新人教A版(65頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1(2010重慶高考重慶高考)在等比數(shù)列在等比數(shù)列an中,中,a20108a2007,則,則公比公比q的值為的值為 ()A2 B3C4 D8答案:答案:A2等比數(shù)列等比數(shù)列an中中a54,則,則a2a8等于等于 ()A4 B8C16 D32答案:答案:C答案:答案: D4已知等比數(shù)列已知等比數(shù)列an各項(xiàng)都是正數(shù),各項(xiàng)都是正數(shù),a13,a1a2a321,則,則a3a4a5_.解析:解析:a1a2a321,a1(1qq2)21又又a13,1qq27解之得解之得q2或或q3(舍舍)a3a4a5q2(a1a2a3)42184.答案:答案:845在數(shù)列在數(shù)列an,bn中,中,bn是是an與與an1的等差
2、中項(xiàng),的等差中項(xiàng),a12,且對(duì)任意且對(duì)任意nN*,都有,都有3an1an0,則,則bn的通項(xiàng)公式的通項(xiàng)公式bn_.1等比數(shù)列的相關(guān)概念等比數(shù)列的相關(guān)概念a1qn1相關(guān)名詞相關(guān)名詞等比數(shù)列等比數(shù)列an的有關(guān)概念及公式的有關(guān)概念及公式前前n項(xiàng)項(xiàng)和公式和公式等比中項(xiàng)等比中項(xiàng)設(shè)設(shè)a、b為任意兩個(gè)同號(hào)的實(shí)數(shù),則為任意兩個(gè)同號(hào)的實(shí)數(shù),則a、b的等的等比中項(xiàng)比中項(xiàng)GamanapaqSm(S3mS2m) 已知數(shù)列已知數(shù)列an的首項(xiàng)的首項(xiàng)a15,前,前n項(xiàng)和為項(xiàng)和為Sn,且,且Sn12Snn5,nN*.(1)證明:數(shù)列證明:數(shù)列an1是等比數(shù)列;是等比數(shù)列;(2)求求an的通項(xiàng)公式以及的通項(xiàng)公式以及Sn.考點(diǎn)一
3、考點(diǎn)一等比數(shù)列的判定與證明等比數(shù)列的判定與證明自主解答自主解答(1)證明:由已知證明:由已知Sn12Snn5,nN*,可得可得n2時(shí),時(shí),Sn2Sn1n4,兩式相減得兩式相減得Sn1Sn2(SnSn1)1,即即an12an1,從而,從而an112(an1),設(shè)數(shù)列設(shè)數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,已知,已知a12a23a3nan(n1)Sn2n(nN*)(1)求求a2,a3的值;的值;(2)求證數(shù)列求證數(shù)列Sn2是等比數(shù)列是等比數(shù)列解:解:(1)a12a23a3nan(n1)Sn2n(nN*),當(dāng)當(dāng)n1時(shí),時(shí),a1212,當(dāng)當(dāng)n2時(shí),時(shí),a12a2(a1a2)4,a24,當(dāng)當(dāng)n3時(shí),時(shí),a
4、12a23a32(a1a2a3)6,a38.(2)證明:證明:a12a23a3nan(n1)Sn2n(nN*), 當(dāng)當(dāng)n2時(shí),時(shí),a12a23a3(n1)an1(n2)Sn12(n1), 得,得,nan(n1)Sn(n2)Sn12n(SnSn1)Sn2Sn12nanSn2Sn12,考點(diǎn)二考點(diǎn)二等比數(shù)列的基本運(yùn)算等比數(shù)列的基本運(yùn)算 在等比數(shù)列在等比數(shù)列an中,已知中,已知a6a424,a3a564.求求an前前8項(xiàng)的和項(xiàng)的和S8.自主解答自主解答設(shè)數(shù)列設(shè)數(shù)列an的首項(xiàng)為的首項(xiàng)為a1,公比為,公比為q,由已知,由已知條件得:條件得:a6a4a1q3(q21)24. (*)a3a5(a1q3)264
5、.a1q38.將將a1q38代入代入(*)式,式,得得q22(舍去舍去),已知正項(xiàng)等比數(shù)列已知正項(xiàng)等比數(shù)列an中,中,a1a52a2a6a3a7100,a2a42a3a5a4a636,求數(shù)列,求數(shù)列an的通項(xiàng)的通項(xiàng)an和前和前n項(xiàng)和項(xiàng)和Sn. (1)在等比數(shù)列在等比數(shù)列an中,若中,若a1a2a3a41,a13a14a15a168,求,求a41a42a43a44.(2)有四個(gè)正數(shù),前三個(gè)數(shù)成等差數(shù)列,其和為有四個(gè)正數(shù),前三個(gè)數(shù)成等差數(shù)列,其和為48,后,后三個(gè)數(shù)成等比數(shù)列,其最后一個(gè)數(shù)為三個(gè)數(shù)成等比數(shù)列,其最后一個(gè)數(shù)為25,求此四個(gè)數(shù),求此四個(gè)數(shù)考點(diǎn)三考點(diǎn)三等比數(shù)列的性質(zhì)及應(yīng)用等比數(shù)列的性質(zhì)及
6、應(yīng)用法二:法二:由性質(zhì)可知,依次由性質(zhì)可知,依次4項(xiàng)的積為等比數(shù)列,項(xiàng)的積為等比數(shù)列,設(shè)公比為設(shè)公比為q,T1a1a2a3a41,T4a13a14a15a168,T4T1q31q38.q2.T11a41a42a43a44T1q102101 024.(2)設(shè)前三個(gè)數(shù)分別為設(shè)前三個(gè)數(shù)分別為ad,a,ad(d為公差為公差),由題意知,由題意知,(ad)a(ad)48,解得解得a16.又又后三個(gè)數(shù)成等比數(shù)列,即后三個(gè)數(shù)成等比數(shù)列,即16,16d,25成等比數(shù)列,成等比數(shù)列,(16d)21625.解之得,解之得,d4,或,或d36.因四個(gè)數(shù)均為正數(shù),故因四個(gè)數(shù)均為正數(shù),故d36應(yīng)舍去,應(yīng)舍去,所以所求四
7、個(gè)數(shù)依次是所以所求四個(gè)數(shù)依次是12,16,20,25.將問(wèn)題將問(wèn)題(1)中中“a1a2a3a41,a13a14a15a168”改改為為“a1a2a37,a1a2a38”,求,求 an的通項(xiàng)公式的通項(xiàng)公式(1)已知等比數(shù)列已知等比數(shù)列an滿足滿足an0,n1,2,且,且a5a2n522n(n3),則當(dāng),則當(dāng)n1時(shí),求時(shí),求log2a1log2a3log2a2n1的值的值(2)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)均為正數(shù)的等比數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,若,若Sn2,S3n14,求,求S4n的值的值(2)由等比數(shù)列性質(zhì):由等比數(shù)列性質(zhì):Sn,S2nSn,S3nS2n,S4nS3n成等比數(shù)列,成等比數(shù)
8、列,則則(S2nSn)2Sn(S3nS2n),(S2n2)22(14S2n)又又S2n0得得S2n6,又,又(S3nS2n)2(S2nSn)(S4nS3n),(146)2(62)(S4n14),解得,解得S4n30.考點(diǎn)四考點(diǎn)四等比數(shù)列的綜合應(yīng)用等比數(shù)列的綜合應(yīng)用自主解答自主解答(1)Sn13Sn2,Sn113(Sn1)又又S113,Sn1是首項(xiàng)為是首項(xiàng)為3,公比為,公比為3的等比數(shù)列且的等比數(shù)列且Sn3n1,nN*.(2)n1時(shí),時(shí),a1S12,n1時(shí),時(shí),anSnSn1(3n1)(3n11)(2)由由(1)知知lg(1an)2n1lg(1a1)2n1lg3 ,1an32n1.(*)Tn(1
9、a1)(1a2)(1an) .由由(*)式得式得an 1.12lg3n 01212222333=3n 211 2 22213=3nn 123n 等比數(shù)列的定義、通項(xiàng)公式、性質(zhì)、前等比數(shù)列的定義、通項(xiàng)公式、性質(zhì)、前n項(xiàng)和公式是高項(xiàng)和公式是高考的熱點(diǎn)內(nèi)容,其中等比數(shù)列的基本量的計(jì)算能很好地考查考的熱點(diǎn)內(nèi)容,其中等比數(shù)列的基本量的計(jì)算能很好地考查考生對(duì)上述知識(shí)的應(yīng)用以及對(duì)函數(shù)與方程、等價(jià)轉(zhuǎn)化、分類考生對(duì)上述知識(shí)的應(yīng)用以及對(duì)函數(shù)與方程、等價(jià)轉(zhuǎn)化、分類討論等思想方法的運(yùn)用,是高考的一種重要考向討論等思想方法的運(yùn)用,是高考的一種重要考向(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成
10、ancqn1(c,q 均為不為均為不為0的常數(shù),的常數(shù),nN*),則,則an是等比數(shù)列是等比數(shù)列(4)前前n項(xiàng)和公式法:若數(shù)列項(xiàng)和公式法:若數(shù)列an的前的前n項(xiàng)和項(xiàng)和Snkqnk(k 為常數(shù)且為常數(shù)且k0,q0,1),則,則an是等比數(shù)列是等比數(shù)列4等比數(shù)列的單調(diào)性等比數(shù)列的單調(diào)性當(dāng)當(dāng)a10,q1或或a10,0q1時(shí)為遞增數(shù)列;當(dāng)時(shí)為遞增數(shù)列;當(dāng)a10,q1或或a10,0q1時(shí)為遞減數(shù)列;當(dāng)時(shí)為遞減數(shù)列;當(dāng)q0時(shí)為擺動(dòng)時(shí)為擺動(dòng)數(shù)列;當(dāng)數(shù)列;當(dāng)q1時(shí)為常數(shù)列時(shí)為常數(shù)列1(2010遼寧高考遼寧高考)設(shè)設(shè)Sn為等比數(shù)列為等比數(shù)列an的前的前n項(xiàng)和,已知項(xiàng)和,已知3S3a42,3S2a32,則公比,則
11、公比q ()A3 B4C5 D6答案:答案:B答案:答案:A3等比數(shù)列等比數(shù)列an中,中,|a1|1,a58a2,a5a2,則,則an ()A(2)n1 B(2)n1C(2)n D(2)n答案:答案:A答案:答案:5設(shè)設(shè)an是正項(xiàng)等比數(shù)列,令是正項(xiàng)等比數(shù)列,令Snlga1lga2lgannN*.如果存在互異正整數(shù)如果存在互異正整數(shù)m、n,使得,使得SnSm.則則Smn_.答案:答案:06若數(shù)列若數(shù)列an滿足滿足a11,an1pSnr(nN*),p,rR,Sn為數(shù)列為數(shù)列an的前的前n項(xiàng)和項(xiàng)和(1)當(dāng)當(dāng)p2,r0時(shí),求時(shí),求a2,a3,a4的值;的值;(2)是否存在實(shí)數(shù)是否存在實(shí)數(shù)p,r,使得數(shù)
12、列,使得數(shù)列an為等比數(shù)列?若為等比數(shù)列?若存在,求出存在,求出p,r滿足的條件;若不存在,說(shuō)明理由滿足的條件;若不存在,說(shuō)明理由解:解:(1)因?yàn)橐驗(yàn)閍11,an1pSnr,所以當(dāng)所以當(dāng)p2,r0時(shí),時(shí),an12Sn,所以所以a22a12,a32S22(a1a2)2(12)6,a42S32(a1a2a3)2(126)18.(2)因?yàn)橐驗(yàn)閍n1pSnr,所以,所以anpSn1r(n2),所以所以an1an(pSnr)(pSn1r)pan,即即an1(p1)an,其中,其中n2,所以若數(shù)列所以若數(shù)列an為等比數(shù)列,則公比為等比數(shù)列,則公比qp10,所以所以p1,又又a2pra1qa1(p1)p1,故,故r1.所以當(dāng)所以當(dāng)p1,r1時(shí),數(shù)列時(shí),數(shù)列an為等比數(shù)列為等比數(shù)列點(diǎn)擊此圖片進(jìn)入課下沖關(guān)作業(yè)點(diǎn)擊此圖片進(jìn)入課下沖關(guān)作業(yè)