《新版廣東省江門(mén)市高考數(shù)學(xué)一輪復(fù)習(xí) 專(zhuān)項(xiàng)檢測(cè)試題24 平面解析幾何1》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新版廣東省江門(mén)市高考數(shù)學(xué)一輪復(fù)習(xí) 專(zhuān)項(xiàng)檢測(cè)試題24 平面解析幾何1(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新版-□□新版數(shù)學(xué)高考復(fù)習(xí)資料□□-新版
1
2、 1
平面解析幾何01
1.在△ABC中,角A,B,C的對(duì)邊分別a,b,c,若.則直線(xiàn)被圓 所截得的弦長(zhǎng)為 .
【答案】
【解析】由題意:設(shè)弦長(zhǎng)為
圓心到直線(xiàn)的距離
由幾何關(guān)系: [精編數(shù)學(xué)高考復(fù)習(xí)資料]
2.經(jīng)過(guò)圓的圓心,且與直線(xiàn)平行的直線(xiàn)方程為( )
A.
3、 B.
C. D.
3.已知為圓內(nèi)異于圓心的一點(diǎn),則直線(xiàn)與該圓的位置關(guān)系是 ( )
A.相切 B.相交 C.相離 D.相切或相交
【答案】C
【解析】因?yàn)閳A內(nèi)異于圓心的一點(diǎn),故圓心到
直線(xiàn)的距離為,故直線(xiàn)與圓相離.
4. 已知點(diǎn)P的坐標(biāo),過(guò)點(diǎn)P的直線(xiàn)l與圓相交于A、B兩點(diǎn),則的最小值為
4、 .
【答案】4
【解析】如圖,點(diǎn)P位于三角形內(nèi)。圓的半徑為。要使的最小值,則有圓心到直線(xiàn)的距離最大,有圖象可知當(dāng)點(diǎn)P位于E點(diǎn)時(shí),圓心到直線(xiàn)的距離最大,此時(shí)直線(xiàn),所以,所以,即最小值為4.
5.直線(xiàn)與圓相交于兩點(diǎn)(),且是直角三角形(是坐標(biāo)原點(diǎn)),則點(diǎn)與點(diǎn)之間距離的最大值是
A. B. C. D.
【答案】C
【解析】因?yàn)椤鰽OB是直角三角形,所以圓心到直線(xiàn)的距離為,所以,即。所以,由,得。所以點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離為,因?yàn)椋援?dāng)時(shí),為最大值,選C.
8.已知直線(xiàn)與圓交于不同的兩點(diǎn)、,是坐標(biāo)
5、原點(diǎn), [精編數(shù)學(xué)高考復(fù)習(xí)資料]
,那么實(shí)數(shù)的取值范圍是________.
【答案】(-2,-]∪[,2)
9.若直線(xiàn)截得的弦最短,則直線(xiàn)的方程是 ( )
A. B.
C. D.
【答案】D
10.圓被直線(xiàn)所截得的弦長(zhǎng)為 .
【答案】 [精編數(shù)學(xué)高考復(fù)習(xí)資料]
[精編數(shù)學(xué)高考復(fù)習(xí)資料]
11.已知P是圓上的動(dòng)點(diǎn),則P點(diǎn)到直線(xiàn)的距離的最小值為( )
A.1 B.
6、 C.2 D.2
【答案】A
[精編數(shù)學(xué)高考復(fù)習(xí)資料]
12.過(guò)點(diǎn)P(1,-2)的直線(xiàn)將圓截成兩段弧,若其中劣弧的長(zhǎng)度最短,那么直線(xiàn)的方程為 。
【答案】x-y-3=o
13.下列判斷正確的是( )
A.對(duì)于命題,則,均有;
B.是直線(xiàn)與直線(xiàn)互相垂直的充要條件;
C.命題“若,則”的逆否命題為真命題;
D.若實(shí)數(shù),則滿(mǎn)足的概率為.
【答案】C
14.已知拋物線(xiàn)y2=8x的準(zhǔn)線(xiàn)與圓交于兩點(diǎn),則弦長(zhǎng)= .
【答案】8
15.若直線(xiàn)和直線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng),那么直線(xiàn)恒過(guò)定點(diǎn)( )
A.(2,0) B.(1,-1) C.(1,1) D.(-2,0)
【答案】C
16.設(shè)點(diǎn),,直線(xiàn)過(guò)點(diǎn)且與線(xiàn)段相交,則的斜率的取值范圍是( )
A.或 B. C. D.或
【答案】A
17.已知橢圓的方程為,則此橢圓的離心率為( )
(A) (B) (C) (D) [精編數(shù)學(xué)高考復(fù)習(xí)資料]
18.已知a>b>0,e1,e2分別是圓錐曲線(xiàn)和的離心率,設(shè)m=lne1+lne2,則m的取值范圍是 ?。?