高中數(shù)學(xué) 排列組合經(jīng)典課件課件 新人教A版選修2
《高中數(shù)學(xué) 排列組合經(jīng)典課件課件 新人教A版選修2》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué) 排列組合經(jīng)典課件課件 新人教A版選修2(30頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.2.2.組合的定義組合的定義: :從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.3.3.排列數(shù)公式排列數(shù)公式: :4.4.組合數(shù)公式組合數(shù)公式: :1.1.排列的定義排列的定義: :)!(!)1()2)(1(mnnmnnnnAmn排列與組合的區(qū)別與聯(lián)系排列與組合的區(qū)別與聯(lián)系: :與順序有關(guān)的與順序有關(guān)的為排列問(wèn)題為排列問(wèn)題, ,與順序無(wú)關(guān)的為組合問(wèn)題與順序無(wú)關(guān)的為組合問(wèn)題. .)!( !)1()2)(1(mnmnmmnnnnAACmmmnmn例例1.由由0
2、,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字 五位奇數(shù)五位奇數(shù). 解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,應(yīng)該優(yōu)先安應(yīng)該優(yōu)先安 排排,以免不合要求的元素占了這兩個(gè)位置以免不合要求的元素占了這兩個(gè)位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_13C13C14C14C34A34A由分步計(jì)數(shù)原理得由分步計(jì)數(shù)原理得=28813C14C34A 7 7種不同的花種在排成一列的花盆里種不同的花種在排成一列的花盆里, ,若兩若兩種葵花不種在中間,也不種在兩端的花盆種葵花不種在中間,也不種在兩端的花盆里里,問(wèn)有多少
3、不同的種法?問(wèn)有多少不同的種法?25451440A A練習(xí)題練習(xí)題例例2. 72. 7人站成一排人站成一排 , ,其中甲乙相鄰且丙丁相其中甲乙相鄰且丙丁相 鄰鄰, , 共有多少種不同的排法共有多少種不同的排法. .甲甲乙乙丙丙丁丁由分步計(jì)數(shù)原理可得共有由分步計(jì)數(shù)原理可得共有種不同的排法種不同的排法55A22A22A=480解:解:練習(xí)題練習(xí)題5個(gè)男生個(gè)男生3個(gè)女生排成一排個(gè)女生排成一排,3個(gè)女生個(gè)女生要排在一起要排在一起,有多少種不同的排法有多少種不同的排法? 3366AA共有 =4320種不同的排法.55A第二步將第二步將4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6個(gè)元素中間包含首尾
4、兩個(gè)空位共有個(gè)元素中間包含首尾兩個(gè)空位共有種種 不同的方法不同的方法 46A由分步計(jì)數(shù)原理,節(jié)目的不同順序共有 種55A46A相相相相獨(dú)獨(dú)獨(dú)獨(dú)獨(dú)獨(dú)某班新年聯(lián)歡會(huì)原定的某班新年聯(lián)歡會(huì)原定的5 5個(gè)節(jié)目已排成節(jié)個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目目單,開(kāi)演前又增加了兩個(gè)新節(jié)目. .如果如果將這兩個(gè)新節(jié)目插入原節(jié)目單中,且兩將這兩個(gè)新節(jié)目插入原節(jié)目單中,且兩個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)為(為( )30練習(xí)題練習(xí)題四四. .定序問(wèn)題倍縮空位插入策略定序問(wèn)題倍縮空位插入策略例例4.74.7人排隊(duì)人排隊(duì), ,其中甲乙丙其中甲乙丙3 3人順序一定共有多人順序一
5、定共有多 少種不同的排法少種不同的排法解: (空位法空位法)設(shè)想有)設(shè)想有7 7把椅子讓除甲乙丙以外把椅子讓除甲乙丙以外的四人就坐共有的四人就坐共有 種方法,其余的三個(gè)種方法,其余的三個(gè)位置甲乙丙共有位置甲乙丙共有 種坐法,則共有種坐法,則共有 種種 方法方法 47A147A思考思考: :可以先讓甲乙丙就坐嗎可以先讓甲乙丙就坐嗎? ?(插入法插入法) )先排甲乙丙三個(gè)人先排甲乙丙三個(gè)人, ,共有共有1 1種排法種排法, ,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4 4* *5 5* *6 6* *7 7練習(xí)題期中安排考試科目9門(mén),語(yǔ)文要在數(shù)學(xué)之前考,有多少種不同的安排
6、順序? 9921A( (倍縮法倍縮法) )對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題, ,可先把可先把這幾個(gè)元素與其他元素一起進(jìn)行排列這幾個(gè)元素與其他元素一起進(jìn)行排列, ,然后用總排列數(shù)然后用總排列數(shù)除以除以這幾個(gè)元素之間的全排列數(shù)這幾個(gè)元素之間的全排列數(shù), ,則共有不同排法種數(shù)則共有不同排法種數(shù)是:是: 7733AA定序問(wèn)題可以用倍縮法,還可轉(zhuǎn)化為占位插入模型處理定序問(wèn)題可以用倍縮法,還可轉(zhuǎn)化為占位插入模型處理五五. .重排問(wèn)題求冪策略重排問(wèn)題求冪策略例例5.5.把把6 6名實(shí)習(xí)生分配到名實(shí)習(xí)生分配到7 7個(gè)車(chē)間實(shí)習(xí)個(gè)車(chē)間實(shí)習(xí), ,共有共有 多少種不同的分法多少種不同的
7、分法解解: :完成此事共分六步完成此事共分六步: :把第一名實(shí)習(xí)生分配把第一名實(shí)習(xí)生分配 到車(chē)間有到車(chē)間有 種分法種分法. .7 7把第二名實(shí)習(xí)生分把第二名實(shí)習(xí)生分配配 到車(chē)間也有到車(chē)間也有7 7種分法,種分法, 依此類(lèi)推依此類(lèi)推, ,由分步由分步計(jì)計(jì)數(shù)原理共有數(shù)原理共有 種不同的排法種不同的排法67 一般地一般地n不同的元素沒(méi)有限制地安排在不同的元素沒(méi)有限制地安排在m個(gè)位置上的排列數(shù)為個(gè)位置上的排列數(shù)為 種種 n nm m 某某8 8層大樓一樓電梯上來(lái)層大樓一樓電梯上來(lái)8 8名乘客人名乘客人, ,他們他們 到各自的一層下電梯到各自的一層下電梯, ,下電梯的方法下電梯的方法( )87練習(xí)題練習(xí)
8、題例例6.6.有有5 5個(gè)不同的小球個(gè)不同的小球, ,裝入裝入4 4個(gè)不同的盒內(nèi)個(gè)不同的盒內(nèi), , 每盒至少裝一個(gè)球每盒至少裝一個(gè)球, ,共有多少不同的裝共有多少不同的裝 法法. .解解: :第一步從第一步從5 5個(gè)球中選出個(gè)球中選出2 2個(gè)組成復(fù)合元共個(gè)組成復(fù)合元共 有有_種方法種方法. .再把再把5 5個(gè)元素個(gè)元素( (包含一個(gè)復(fù)合包含一個(gè)復(fù)合 元素元素) )裝入裝入4 4個(gè)不同的盒內(nèi)有個(gè)不同的盒內(nèi)有_種方法種方法. .25C44A根據(jù)分步計(jì)數(shù)原理裝球的方法共有根據(jù)分步計(jì)數(shù)原理裝球的方法共有_25C44A練習(xí)題練習(xí)題一個(gè)班有一個(gè)班有6 6名戰(zhàn)士名戰(zhàn)士, ,其中正副班長(zhǎng)各其中正副班長(zhǎng)各1 1
9、人人現(xiàn)從中選現(xiàn)從中選4 4人完成四種不同的任務(wù)人完成四種不同的任務(wù), ,每人每人完成一種任務(wù)完成一種任務(wù), ,且正副班長(zhǎng)有且只有且正副班長(zhǎng)有且只有1 1人人參加參加, ,則不同的選法有則不同的選法有_ _ 種種192192七.元素相同問(wèn)題隔板策略例例7.有有1010個(gè)運(yùn)動(dòng)員名額,在分給個(gè)運(yùn)動(dòng)員名額,在分給7 7個(gè)班,每個(gè)班,每班至少一個(gè)班至少一個(gè), ,有多少種分有多少種分配方案?配方案? 解:因?yàn)榻猓阂驗(yàn)?0個(gè)名額沒(méi)有差別,把它們排成一排。相鄰名額之間形個(gè)名額沒(méi)有差別,把它們排成一排。相鄰名額之間形成個(gè)空隙。成個(gè)空隙。在個(gè)空檔中選個(gè)位置插個(gè)隔板,可把名額分成份,對(duì)應(yīng)地分給個(gè)在個(gè)空檔中選個(gè)位置插
10、個(gè)隔板,可把名額分成份,對(duì)應(yīng)地分給個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有_種分法。種分法。一班二班三班四班五班六班七班69C11mnC練習(xí)題練習(xí)題 10 10個(gè)相同的球裝個(gè)相同的球裝5 5個(gè)盒中個(gè)盒中, ,每盒至少一每盒至少一個(gè),有多少裝法?個(gè),有多少裝法?49C八八. .平均分組問(wèn)題除法策略平均分組問(wèn)題除法策略例8. 6本不同的書(shū)平均分成本不同的書(shū)平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解: 分三步取書(shū)得分三步取書(shū)得 種方法種方法,但這里出現(xiàn)但這里出現(xiàn) 重復(fù)計(jì)數(shù)的重復(fù)計(jì)數(shù)的現(xiàn)象現(xiàn)象,不妨記不妨記6本書(shū)為本書(shū)為ABCDEF 若第一步取若
11、第一步取AB,第二步取第二步取CD,第三步取第三步取EF 該分法記為該分法記為(AB,CD,EF),則則 中還有中還有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有共有 種取法種取法 ,而而 這些分法僅是這些分法僅是(AB,CD,EF)一種分法一種分法,故共故共 有有 種分法。種分法。222642CCC222642CCC33A222642CCC33A平均分成的組平均分成的組,不管它們的順序如何不管它們的順序如何,都是一種情況都是一種情況,所以分組后所以分組后要一定要除以要一定要除以 (n為均分的組數(shù)為均分的組數(shù))避免重復(fù)計(jì)數(shù)。
12、避免重復(fù)計(jì)數(shù)。nnA1. 將將13個(gè)球隊(duì)分成個(gè)球隊(duì)分成3組組,一組一組5個(gè)隊(duì)個(gè)隊(duì),其它兩組其它兩組4 個(gè)隊(duì)個(gè)隊(duì), 有多少分法?有多少分法?544138422C C CA2.2.某校高二年級(jí)共有六個(gè)班級(jí),現(xiàn)從外地轉(zhuǎn)某校高二年級(jí)共有六個(gè)班級(jí),現(xiàn)從外地轉(zhuǎn) 入入4 4名學(xué)生,要安排到該年級(jí)的兩個(gè)班級(jí)且每名學(xué)生,要安排到該年級(jí)的兩個(gè)班級(jí)且每班安排班安排2 2名,則不同的安排方案種數(shù)為名,則不同的安排方案種數(shù)為_(kāi) 2226422290ACC A練習(xí)題練習(xí)題九. 合理分類(lèi)與分步策略例例9.9.在一次演唱會(huì)上共在一次演唱會(huì)上共1010名演員名演員, ,其中其中8 8人能人能 夠唱歌夠唱歌,5,5人會(huì)跳舞人會(huì)跳
13、舞, ,現(xiàn)要演出一個(gè)現(xiàn)要演出一個(gè)2 2人唱人唱 歌歌2 2人伴舞的節(jié)目人伴舞的節(jié)目, ,有多少選派方法有多少選派方法? ?解:10演員中有演員中有5人只會(huì)唱歌,人只會(huì)唱歌,2人只會(huì)跳舞人只會(huì)跳舞 3人為全能演員。人為全能演員。以只會(huì)唱歌的以只會(huì)唱歌的5 5人是否人是否選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究只會(huì)唱只會(huì)唱的的5 5人中沒(méi)有人選上唱歌人員共有人中沒(méi)有人選上唱歌人員共有_種種, ,只會(huì)唱的只會(huì)唱的5 5人人中只有中只有1 1人選上唱歌人員人選上唱歌人員_種種, ,只會(huì)唱的只會(huì)唱的5 5人中只人中只有有2 2人選上唱歌人員有人選上唱歌人員有_ _ 種,由分類(lèi)計(jì)數(shù)原理共有種,
14、由分類(lèi)計(jì)數(shù)原理共有_種。種。2233CC112534CCC2255C C2233C C112534C C C2255C C+ + +解含有約束條件的排列組合問(wèn)題,可按元素的性質(zhì)進(jìn)行分類(lèi),按事件發(fā)生的連續(xù)過(guò)程分步,做到標(biāo)準(zhǔn)明確。分步層次清楚,不重不漏,分類(lèi)標(biāo)準(zhǔn)一旦確定要貫穿于解題過(guò)程的始終。 從從4 4名男生和名男生和3 3名女生中選出名女生中選出4 4人參加某個(gè)座人參加某個(gè)座 談會(huì),若這談會(huì),若這4 4人中必須既有男生又有女生,則人中必須既有男生又有女生,則不同的選法共有不同的選法共有_ _ 練習(xí)題練習(xí)題十十. .構(gòu)造模型策略構(gòu)造模型策略 例例1 10.0.馬路上有編號(hào)為馬路上有編號(hào)為1,2,
15、3,4,5,6,7,8,91,2,3,4,5,6,7,8,9的的 九只路燈九只路燈, ,現(xiàn)要關(guān)掉其中的現(xiàn)要關(guān)掉其中的3 3盞盞, ,但不能關(guān)但不能關(guān) 掉相鄰的掉相鄰的2 2盞或盞或3 3盞盞, ,也不能關(guān)掉兩端的也不能關(guān)掉兩端的2 2 盞盞, ,求滿(mǎn)足條件的關(guān)燈方法有多少種?求滿(mǎn)足條件的關(guān)燈方法有多少種?解:把此問(wèn)題當(dāng)作一個(gè)排隊(duì)模型在解:把此問(wèn)題當(dāng)作一個(gè)排隊(duì)模型在6 6盞盞 亮燈的亮燈的5 5個(gè)空隙中插入個(gè)空隙中插入3 3個(gè)不亮的燈個(gè)不亮的燈 有有_ _ 種種35C一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問(wèn)題直觀解決練習(xí)題練習(xí)題某排共有某排
16、共有1010個(gè)座位,若個(gè)座位,若4 4人就坐,每人左右人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種??jī)蛇叾加锌瘴?,那么不同的坐法有多少種?120小結(jié) 十一十一. .實(shí)際操作窮舉策略實(shí)際操作窮舉策略例例15.15.設(shè)有編號(hào)設(shè)有編號(hào)1,2,3,4,51,2,3,4,5的五個(gè)球和編號(hào)的五個(gè)球和編號(hào)1,21,2 3,4,53,4,5的五個(gè)盒子的五個(gè)盒子, ,現(xiàn)將現(xiàn)將5 5個(gè)球投入這五個(gè)球投入這五 個(gè)盒子內(nèi)個(gè)盒子內(nèi), ,要求每個(gè)盒子放一個(gè)球,并且要求每個(gè)盒子放一個(gè)球,并且 恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.,. 有多少投法有多少投法 解:從從5個(gè)球中取出個(gè)球
17、中取出2個(gè)與盒子對(duì)號(hào)有個(gè)與盒子對(duì)號(hào)有_種種 還剩下還剩下3球球3盒序號(hào)不能對(duì)應(yīng),盒序號(hào)不能對(duì)應(yīng), 利用實(shí)際操作法,如果剩下操作法,如果剩下3,4,5號(hào)球號(hào)球, 3,4,5號(hào)盒號(hào)盒3號(hào)球裝號(hào)球裝4號(hào)盒時(shí),則號(hào)盒時(shí),則4,5號(hào)球有只有號(hào)球有只有1種種裝法裝法3 3號(hào)盒號(hào)盒4 4號(hào)盒號(hào)盒5 5號(hào)盒號(hào)盒34525C十一十一. .實(shí)際操作窮舉策略實(shí)際操作窮舉策略例例15.15.設(shè)有編號(hào)設(shè)有編號(hào)1,2,3,4,51,2,3,4,5的五個(gè)球和編號(hào)的五個(gè)球和編號(hào)1,21,2 3,4,53,4,5的五個(gè)盒子的五個(gè)盒子, ,現(xiàn)將現(xiàn)將5 5個(gè)球投入這五個(gè)球投入這五 個(gè)盒子內(nèi)個(gè)盒子內(nèi), ,要求每個(gè)盒子放一個(gè)球,并且要
18、求每個(gè)盒子放一個(gè)球,并且 恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,.,. 有多少投法有多少投法 解:從從5個(gè)球中取出個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有個(gè)與盒子對(duì)號(hào)有_種種 還剩下還剩下3球球3盒序號(hào)不能對(duì)應(yīng),盒序號(hào)不能對(duì)應(yīng),25C利用實(shí)際操作法,如果剩下操作法,如果剩下3,4,5號(hào)球號(hào)球, 3,4,5號(hào)盒號(hào)盒3號(hào)球裝號(hào)球裝4號(hào)盒時(shí),則號(hào)盒時(shí),則4,5號(hào)球有只有號(hào)球有只有1種裝法種裝法,25C 同理同理3號(hào)球裝號(hào)球裝5號(hào)盒時(shí)號(hào)盒時(shí),4,5號(hào)球有也號(hào)球有也只有只有1種裝法種裝法,由分步計(jì)數(shù)原理有由分步計(jì)數(shù)原理有2 種種 練習(xí)題1.1. 同一寢室同一寢室4 4人人, ,每人寫(xiě)一
19、張賀年卡集中起來(lái)每人寫(xiě)一張賀年卡集中起來(lái), , 然后每人各拿一張別人的賀年卡,則四張然后每人各拿一張別人的賀年卡,則四張 賀年卡不同的分配方式有多少種?賀年卡不同的分配方式有多少種? (9)2.2.給圖中區(qū)域涂色給圖中區(qū)域涂色, ,要求相鄰區(qū)要求相鄰區(qū) 域不同色域不同色, ,現(xiàn)有現(xiàn)有4 4種可選顏色種可選顏色, ,則則 不同的著色方法有不同的著色方法有_種種213457272我們班里有我們班里有4343位同學(xué)位同學(xué), ,從中任抽從中任抽5 5人人, ,正、正、副班長(zhǎng)、團(tuán)支部書(shū)記至少有一人在內(nèi)的副班長(zhǎng)、團(tuán)支部書(shū)記至少有一人在內(nèi)的抽法有多少種抽法有多少種? ?練習(xí)題1.1.從從4 4名男生和名男生
20、和3 3名女生中選出名女生中選出4 4人參加某個(gè)座人參加某個(gè)座 談會(huì),若這談會(huì),若這4 4人中必須既有男生又有女生,則人中必須既有男生又有女生,則不同的選法共有不同的選法共有_ _ 練習(xí)題2. 3 3成人成人2 2小孩乘船游玩小孩乘船游玩,1,1號(hào)船最多乘號(hào)船最多乘3 3人人, 2, 2 號(hào)船最多乘號(hào)船最多乘2 2人人,3,3號(hào)船只能乘號(hào)船只能乘1 1人人, ,他們?nèi)芜x他們?nèi)芜x 2 2只船或只船或3 3只船只船, ,但小孩不能單獨(dú)乘一只船但小孩不能單獨(dú)乘一只船, , 這這3 3人共有多少乘船方法人共有多少乘船方法. .小結(jié):小結(jié):解排列組合的常用策略解排列組合的常用策略作業(yè):作業(yè):課時(shí)作業(yè)課時(shí)作業(yè)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 運(yùn)煤設(shè)備的運(yùn)行和檢修
- 各種煤礦安全考試試題-8
- 窯主、副操作員考試試題(附答案)
- 煤礦安全基礎(chǔ)知識(shí)問(wèn)答題含解析-3
- 井巷掘進(jìn)常見(jiàn)事故及預(yù)防措施總結(jié)
- 某礦業(yè)公司高處作業(yè)安全管理制度
- 非煤礦山現(xiàn)場(chǎng)安全管理
- 常見(jiàn)礦物的簡(jiǎn)易鑒定特征表
- 井下作業(yè)英語(yǔ)100句含中文翻譯
- 瓦斯安全治理理念二十條
- 煤礦電氣設(shè)備失爆原因與預(yù)防措施分析
- 煤礦煤礦運(yùn)料工安全操作規(guī)程
- 煤礦安全培訓(xùn)考試試題之簡(jiǎn)答題含答案
- 煤礦常見(jiàn)疾病預(yù)防與救治
- 煤礦綜采維修電工操作規(guī)程