《精修版貴州省貴陽市九年級數(shù)學競賽講座 11第十一講 雙曲線》由會員分享,可在線閱讀,更多相關《精修版貴州省貴陽市九年級數(shù)學競賽講座 11第十一講 雙曲線(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
2.雙曲線圖象上的點是關于原點O成中心對稱,在>0時函數(shù)的圖象關于直線軸對稱;在<0時函數(shù)的圖象關于直線軸對稱.
3.自變量的取值是不等于零的全體實數(shù),雙曲線向坐標軸無限延伸但不能接近坐標軸.
【例題求解】
【例1】 已知反比例函數(shù)的圖象與直線和過同一點,則當時,這個反比例函數(shù)的函數(shù)值隨的增大而 (填增大或減小).
思路點撥 確定的值,只需求出雙曲線上一
2、點的坐標即可.
注:(1)解與反比函數(shù)相關問題時,充分考慮它的對稱性(關于原點O中心稱,關于軸對稱),這樣既能從整上思考問題,又能提高思維的周密性.
(2)一個常用命題:
如圖,設點A是反比例函數(shù)()的圖象上一點,過A作AB⊥軸于B,過A作AC⊥軸于C,則
①S△AOB=;
②S矩形OBAC=.
【例2】 如圖,正比例函數(shù) ()與反比例函數(shù)的圖象相交于A、C兩點,過A作AB⊥軸于B,連結BC,若S△ABC的面積為S,則( )
A.S=1 B.S =2 C.S= D.S=
3、
思路點撥 運用雙曲線的對稱性,導出S△AOB與S△OBC的關系.
【例3】 如圖,已知一次函數(shù)和反比例函數(shù)()的圖象在第一象限內有兩個不同的公共點A、B.
(1)求實數(shù)的取值范圍;
(2)若△AOB面積S=24,求的值.
(2003年荊門市中考題)
思路點撥 (1)兩圖象有兩個不同的公共點,即聯(lián)立方程組有兩組不同實數(shù)解;
(2)S△AOB= S△COB S- S△COA,建立的方程.
【例4】 如圖,直線分別交、軸于點A、C,P是該直線上在第一象限內的一點,
4、PB⊥軸于B,S△ABP=9.
(1)求點P的坐標;
(2)設點R與點P在同一個反比例函數(shù)的圖象上,且點R在直線PB的右側,作PT⊥軸于F,當△BRT與△AOC相似時,求點R的坐標.
思路點撥 (1)從已知的面積等式出發(fā),列方程求P點坐標;(2)以三角形相似為條件,結合線段長與坐標的關系求R坐標,但要注意分類討論.
【例5】 如圖,正方形OABC的面積為9,點O為坐標原點,點A在軸上,點C在軸上, 點B在函數(shù) (,)的圖象上,點P(,)是函數(shù) (,)的圖象上的任意一點,過點P分別作軸、軸的垂線,垂足分別為E、F,并設矩形OEPF和正方形OABC不重合部分的面積為S.
5、
(1)求B點坐標和的值;
(2)當時,求點P的坐標;
(3)寫出S關于m的函數(shù)關系式.
思路點撥 把矩形面積用坐標表示,A、B坐標可求,S矩形OAGF可用含的代數(shù)式表示,解題的關鍵是雙曲線關于對稱,符合題設條件的P點不惟一,故思考須周密.
注:求兩個函數(shù)圖象的交點坐標,一般通過解這兩個函數(shù)解析式組成的方程組得到,求符合某種條件
的點的坐標,需根據(jù)問題中的數(shù)量關系和幾何元素間的關系建立關于縱橫坐標的方程(組),解方程(組)便可
6、求得有關點的坐標,對于幾何問題,還應注意圖形的分類討論.
學歷訓練
1. 若一次函數(shù)的圖象如圖所示,則拋物線的對稱軸位于y軸的
側;反比例函數(shù)的圖象在第 象限,在每一個象限內,y隨x的增大而 .
2.反比例函數(shù)的圖象經(jīng)過點A(m,n),其中m,n是一元二次方程的兩個根,則A點坐標為 .
3.如圖:函數(shù)(≠0)與的圖象交于A、B兩點,過點A作AC⊥軸,垂足為點C,則△BOC的面積為 .
4.已知,點P(n,2n)是第一象限的點,下面四個命題:
(1)點P關于y軸對稱的點P1的坐標是(
7、n,-2n); (2)點P到原點O的距離是n;(3)直線 y=-nx+2n不經(jīng)過第三象限;(4)對于函數(shù)y=,當x<0時,y隨x的增大而減??;其中真命題是 .(填上所有真命題的序號)
5.已知反比例函數(shù)y=的圖像上兩點A(x1,y1)、B(x2,y2),當x1<0<x2時,有y1<y2 ,則m的取值范圍是( )
A.m<O B.m>0 C. m< D.m>
8、
6.已知反比例函數(shù)的圖象如圖所示,則二次函數(shù)的圖象大致為( )
7.已知反比例函數(shù)當時,y 隨x的增大面增大,那么一次函數(shù)的圖象經(jīng)過( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
8.如圖,A、B是函數(shù)的圖象上的點,且A
9、、B關于原點O對稱,AC⊥軸于C,BD⊥軸于D,如果四邊形ACBD的面積為S,那么( )
A. S=1 B.12 D.S=2
9.如圖,已知一次函數(shù)y=kx+b(k≠O)的圖像與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(m≠0)的圖像在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=l.
(1)求點A、B、D的坐標;
(2)求一次函數(shù)和反比例函數(shù)的解析式.
10.已知A(x1、
10、y1),B(x2,y2)是直線與雙曲線 ()的兩個不同交點.
(1)求的取值范圍;
(2)是否存在這樣的值,使得?若存在,求出這樣的值;若不存在,請說明理由.
11.已知反比例函數(shù)和一次函數(shù)y=2x-1,其中一次函數(shù)圖像經(jīng)過(a,b),(a+1,b+k)兩點.
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點A在第一象限,且同時在上述兩個函數(shù)的圖像上,求A點坐標;
(3)利用(2)的結果,請問:在x軸上是否存在點P,使ΔAOP為等腰三角形?若存在,把符合條件的P點
11、坐標都求出來;若不存在,請說明理由.
12.反比例函數(shù)的圖象上有一點P(m,n),其中m、n是關于t的一元二次方程的兩根,且P到原點O的距離為,則該反比例函數(shù)的解析式為 .
13.如圖,正比例函數(shù)的圖象與反比例函數(shù) ()的圖象交于點A,若取1,2,3…20,對應的Rt△AOB的面積分別為S1,S2,…,S20,則S1+S2+…+S20= .
14.老師給出一個函數(shù)y=f(x),甲、乙、丙、丁四位同學各指出這個函數(shù)的一個性質:
甲:函數(shù)圖
12、像不經(jīng)過第三象限;
乙:函數(shù)圖像經(jīng)過第一象限;
丙:當x<2時,y隨x的增大而減??;
丁:當x<2時,y>0
已知這四位同學敘述都正確,請構造出滿足上述所有性質的一個函數(shù): .
15.已知反比例函數(shù)的圖象和一次函數(shù)的圖象都經(jīng)過點P(m,2).
(1)求這個一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點A、B在這個一次函數(shù)的圖象上,頂點C、D在這個反比例函數(shù)的圖象上,兩底AD、BC與軸平行,且A、B的橫坐標分別為和,
13、求的值.
16.如圖,直線經(jīng)過A(1,0),B(0,1)兩點,點P是雙曲線()上任意一點,PM⊥軸,PN⊥軸,垂足分別為M,N.PM與直線AB交于點E,PN的延長線與直線AB交于點F.
(1) 求證:AF×BE=1;
(2)若平行于AB的直線與雙曲線只有一個公共點,求公共點的坐標.
(2003年江漢油田中考題)
17.已知矩形ABCD的面積為36,以此矩形的對稱軸為坐標軸建立平面直角坐標系,設點A的坐標為(x,y),其中x>0,y>0.
(1)求出y與x之間的函數(shù)關系式,求出自變量x的取值范圍;
(2)用x、y表示矩形ABCD的外接
14、圓的面積S,并用下列方法,解答后面的問題:
方法:∵ (k為常數(shù)且k>0,a≠0),且
∴..
∴當=0,即時,取得最小值2k.
問題:當點A在何位置時,矩形ABCD的外接圓面積S最小?并求出S的最小值;
(3)如果直線y=mx+2(m<0)與x軸交于點P,與y軸交于點Q,那么是否存在這樣的實數(shù)m,使得點P、Q與(2)中求出的點A構成△PAQ的面積是矩形ABCD面積的?若存在,請求出m的值;若不存在,請說明理由.
參考答案
最新精品資料