2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題二 三角函數(shù)、平面 向量 第三講 平面向量教案
《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題二 三角函數(shù)、平面 向量 第三講 平面向量教案》由會員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題二 三角函數(shù)、平面 向量 第三講 平面向量教案(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第三講 平面向量 [考情分析] 平面向量的命題近幾年較穩(wěn)定,一般是單獨命題考查平面向量的模、數(shù)量積的運算、線性運算等,難度較低,有時也與三角函數(shù)、解析幾何綜合命題,難度中等. 年份 卷別 考查角度及命題位置 2017 Ⅰ卷 向量垂直的應(yīng)用·T13 Ⅱ卷 向量加減法的幾何意義·T4 Ⅲ卷 向量垂直的應(yīng)用·T13 2016 Ⅰ卷 平面向量垂直求參數(shù)·T13 Ⅱ卷 平面向量共線求參數(shù)·T13 Ⅲ卷 向量的夾角公式·T3 2015 Ⅰ卷 平面向量的坐標運算·T2 Ⅱ卷 平面向量數(shù)量積的坐標運算·T4 [真題自檢] 1.(2017·高考全國
2、卷Ⅱ)設(shè)非零向量a,b滿足|a+b|=|a-b|,則( ) A.a(chǎn)⊥b B.|a|=|b| C.a(chǎn)∥b D.|a|>|b| 解析:依題意得(a+b)2-(a-b)2=0,即4a·b=0,a⊥b,選A. 答案:A 2.(2015·高考全國卷Ⅱ)向量a=(1,-1),b=(-1,2),則(2a+b)·a=( ) A.-1 B.0 C.1 D.2 解析:法一:∵a=(1,-1),b=(-1,2),∴a2=2,a·b=-3,從而(2a+b)·a=2a2+a·b=4-3=1. 法二:∵a=(1,-1),b=(-1,2),∴2a+b=(2,-2)+(-1,2)=(1,0),從而
3、(2a+b)·a=(1,0)·(1,-1)=1,故選C. 答案:C 3.(2016·高考全國卷Ⅱ)已知向量a=(m,4),b=(3,-2),且a∥b,則m=________. 解析:∵a=(m,4),b=(3,-2),a∥b,∴-2m-4×3=0.∴m=-6. 答案:-6 4.(2017·高考全國卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b與a垂直,則m=________. 解析:因為a+b=(m-1,3),a+b與a垂直,所以(m-1)×(-1)+3×2=0,解得m=7. 答案:7 平面向量的概念及線性運算 [方法結(jié)論] 1.在用三角形加法法則時要保證
4、“首尾相接”,結(jié)果向量是第一個向量的起點指向最后一個向量終點所在的向量;在用三角形減法法則時要保證“同起點”,結(jié)果向量的方向是指向被減向量. 2.利用平面向量基本定理實現(xiàn)了平面內(nèi)任一向量都可以表示為同一平面內(nèi)兩個不共線的向量e1,e2的線性組合λ1e1+λ2e2,常用方法有兩種:一是直接利用三角形法則與平行四邊形法則及向量共線定理來破解;二是利用待定系數(shù)法,即利用定理中λ1,λ2的唯一性列方程組求解. [題組突破] 1.如圖,在△OAB中,點B關(guān)于點A的對稱點為C,D在線段OB上,且OD=2DB,DC和OA相交于點E.若=λ,則λ=( ) A. B. C. D. 解析:通解
5、:設(shè)=a,=b,由題意得=-=+-=+-=2a-b. 因為=λ=λa,設(shè)=μ=2μa-μb,又=+,所以λa=b+2μa-μb=2μa+b, 所以,所以λ=. 優(yōu)解:由題意知,AB=AC,OD=2DB,過點A作AF∥OB交CD于點F(圖略),則==, 即AF=BD=OD,故AE=OE,則OE=OA,又=λ,故λ=. 答案:C 2.如圖,在正方形ABCD中,M,N分別是BC,CD的中點,若=λ+μ,則λ+μ=( ) A.2 B. C. D. 解析:法一:以AB,AD所在直線分別為x軸,y軸,建立平面直角坐標系,如圖所示,設(shè)正方形的邊長為1,則=(1,),=(-,1),
6、=(1,1),∵=λ+μ=(λ-μ,+μ), ∴,解得,∴λ+μ=,故選D. 法二:由=+,=-+,得=λ+μ=(λ-)+(+μ), 又=+,∴,解得,∴λ+μ=,故選D. 答案:D 3.已知平面向量a=(2,1),c=(1,-1).若向量b滿足(a-b)∥c,(a+c)⊥b,則b=( ) A.(2,1) B.(1,2) C.(3,0) D.(0,3) 解析:通解:設(shè)b=(x,y),則a-b=(2-x,1-y),a+c=(3,0),由(a-b)∥c可得, -(2-x)-(1-y)=0,即x+y-3=0.由(a+c)⊥b可得,3x=0,則x=0,y=3,選D. 優(yōu)解:因
7、為a+c=(3,0),且(a+c)⊥b,逐個驗證選項可知,選D. 答案:D [誤區(qū)警示] 在運用向量共線定理時,向量a與b共線存在實數(shù)λ保持a=λb成立的前提條件是b≠0. 平面向量的數(shù)量積 [方法結(jié)論] 1.平面向量的數(shù)量積的運算的兩種形式 (1)依據(jù)模和夾角計算,要注意確定這兩個向量的夾角,如夾角不易求或者不可求,可通過選擇易求夾角和模的基底進行轉(zhuǎn)化; (2)利用坐標來計算,向量的平行和垂直都可以轉(zhuǎn)化為坐標滿足的等式,從而應(yīng)用方程思想解決問題,化形為數(shù),使向量問題數(shù)字化. 2.夾角公式 cos θ==. 3.模 |a|==. 4.向量a與b垂直?a·b=0. [
8、題組突破] 1.(2017·洛陽模擬)已知向量a=(1,0),|b|=,a與b的夾角為45°.若c=a+b,d=a-b,則c在d方向上的投影為( ) A. B.- C.1 D.-1 解析:依題意得|a|=1,a·b=1××cos 45°=1,|d|===1,c·d=a2-b2=-1,因此c在d方向上的投影等于=-1,選D. 答案:D 2.如圖,△AOB為直角三角形,OA=1,OB=2,C為斜邊AB的中點,P為線段OC的中點,則·=( ) A.1 B. C. D.- 解析:通解:因為△AOB為直角三角形,OA=1,OB=2,C為斜邊AB的中點,所以=+,所以==(
9、+),則=-=-,所以·=(-3)·(+)=(2-32)=. 優(yōu)解:以O(shè)為原點,的方向為x軸正方向,的方向為y軸正方向建立平面直角坐標系(圖略),則A(0,1),B(2,0),C,所以==,=,故·=×=. 答案:B 3.(2016·珠海摸底)已知|a|=|b|,且|a+b|=|a-b|,則向量a與b的夾角為( ) A.30° B.45° C.60° D.120° 解析:通解:設(shè)a與b的夾角為θ,由已知可得a2+2a·b+b2=3(a2-2a·b+b2),即4a·b=a2+b2,因為|a|=|b|,所以a·b=a2,所以cos θ==,θ=60°,選C. 優(yōu)解:由|a|=|
10、b|,且|a+b|=|a-b|可構(gòu)造邊長為|a|=|b|=1的菱形,如圖,則|a+b|與|a-b|分別表示兩條對角線的長,且|a+b|=,|a-b|=1,故a與b的夾角為60°,選C. 答案:C 4.已知在平面直角坐標系中,O為坐標原點,A(1,0),B(0,-),C(-3,0),動點P滿足||=1,則|++|的最小值是________. 解析:通解:由||=1得點P(x,y)的軌跡方程為(x+3)2+y2=1,又=(1,0),=(0,-),=(x,y),故++=(1+x,y-),|++|的幾何意義是點M(-1,)與圓(x+3)2+y2=1上的點之間的距離.||==,由數(shù)形結(jié)合(圖略
11、)可知|++|的最小值即為點M(-1,)到圓(x+3)2+y2=1上的點的最短距離,故|++|的最小值為-1. 優(yōu)解:動點P的軌跡為以C為圓心的單位圓,設(shè)P(cos θ-3,sin θ)(θ∈[0,2π)), 則|++|===, 其中tan φ=,所以|++|的最小值為=-1. 答案:-1 [誤區(qū)警示] 1.在解決平面向量的數(shù)量積問題中的注意點 (1)兩個向量的夾角的定義;(2)兩個向量的夾角的范圍;(3)平面向量的數(shù)量積的幾何意義;(4)向量的數(shù)量積的運算及其性質(zhì)等. 2.向量的數(shù)量積運算需要注意的問題 a·b=0時得不到a=0或b=0,根據(jù)平面向量數(shù)量積的性質(zhì)有|a|2=
12、a2,但|a·b|≤|a|·|b|. 平面向量與其他知識的交匯問題 平面向量具有代數(shù)形式與幾何形式的“雙重型”,常與三角函數(shù)、解三角形、平面解析幾何、函數(shù)、不等式等知識交匯命題,平面向量的“位置”:一是作為解決問題的工具,二是通過運算作為命題條件. 交匯點一 平面向量與三角、解三角形的交匯 [典例1] (2016·青島二中模擬)已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,向量m=(sin A,sin B),n=(sin C,sin A),且m∥n. (1)若cos A=,b+c=6,求△ABC的面積; (2)求sin B的取值范圍. 解析:因為m∥n,所以sin2 A=
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案