《高考數(shù)學二輪復習 第三篇 攻堅克難 壓軸大題多得分 第32練 導數(shù)的綜合應用課件 文》由會員分享,可在線閱讀,更多相關《高考數(shù)學二輪復習 第三篇 攻堅克難 壓軸大題多得分 第32練 導數(shù)的綜合應用課件 文(89頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第32練導數(shù)的綜合應用第三篇攻堅克難壓軸大題多得分明考情導數(shù)部分在高考中的應用一般綜合性較強,以壓軸題形式呈現(xiàn),導數(shù)和函數(shù)零點,方程根及不等式相結合是高考命題的熱點,高檔難度.知考向1.導數(shù)與函數(shù)零點.2.導數(shù)與不等式.3.導數(shù)與其他知識的交匯問題.研透考點核心考點突破練欄目索引規(guī)范解答模板答題規(guī)范練研透考點核心考點突破練考點一導數(shù)與函數(shù)零點方法技巧方法技巧研究函數(shù)零點或兩函數(shù)圖象的交點,可以通過導數(shù)研究函數(shù)的單調性、極值和最值,確定函數(shù)圖象的變化趨勢,畫出函數(shù)草圖,確定函數(shù)圖象與x軸的交點或兩函數(shù)圖象的交點.解解函數(shù)f(x)的定義域為(0,),(1)求函數(shù)f(x)的單調區(qū)間;1234解答(2
2、)當m1時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù).1234解答問題等價于求函數(shù)F(x)的零點個數(shù).當m1時,F(xiàn)(x)0,函數(shù)F(x)為減函數(shù),所以F(x)有唯一零點.當m1時,若0 x1或xm,則F(x)0;若1xm,則F(x)0,12341234所以函數(shù)F(x)在(0,1)和(m,)上單調遞減,在(1,m)上單調遞增,所以F(x)有唯一零點.綜上,函數(shù)F(x)有唯一零點,即兩函數(shù)圖象總有一個交點.(1)當me(e為自然對數(shù)的底數(shù))時,求f(x)的極小值;當x(0,e)時,f(x)0,f(x)在(e,)上單調遞增,f(x)的極小值為2.1234解答1234解答則(x)x21(x1)(x1)
3、,當x(0,1)時,(x)0,(x)在(0,1)上單調遞增;當x(1,)時,(x)0,(x)在(1,)上單調遞減.x1是(x)的唯一極值點,且是極大值點,因此x1也是(x)的最大值點,1234又(0)0,結合y(x)的圖象(如圖)可知,當m0時,函數(shù)g(x)有且只有一個零點.12341234解答3.已知函數(shù)f(x)2ln xx2ax(aR).(1)當a2時,求f(x)的圖象在x1處的切線方程;解解當a2時,f(x)2ln xx22x,切線的斜率kf(1)2,所以切線方程為y12(x1),即2xy10.1234解答解解g(x)2ln xx2m,當1xe時,g(x)0.所以g(x)在x1處取得極大
4、值g(1)m1.123412341234解答4.(2017全國)已知函數(shù)f(x)ae2x(a2)exx.(1)討論f(x)的單調性;解解f(x)的定義域為(,),f(x)2ae2x(a2)ex1(aex1)(2ex1).(i)若a0,則f(x)0,則由f(x)0,得xln a.當x(,ln a)時,f(x)0.所以f(x)在(,ln a)上單調遞減,在(ln a,)上單調遞增.1234解答(2)若f(x)有兩個零點,求a的取值范圍.解解(i)若a0,由(1)知,f(x)至多有一個零點.(ii)若a0,由(1)知,當xln a時,f(x)取得最小值,當a1時,由于f(ln a)0,故f(x)只有
5、一個零點;即f(ln a)0,故f(x)沒有零點;又f(2)ae4(a2)e222e220,故f(x)在(,ln a)上有一個零點.1234因此f(x)在(ln a,)上有一個零點.綜上,a的取值范圍為(0,1).1234則f(n0) (a a2)n0 n0 n00.0en02n0en0en考點二導數(shù)與不等式方法技巧方法技巧導數(shù)與不等式問題相結合有兩個方面:一是由不等式恒成立(或有解)求解參數(shù)取值范圍;二是證明不等式或與自然數(shù)有關的不等式.解決這兩類問題的核心是“函數(shù)的最值”.5.(2017保定模擬)已知函數(shù)f(x)ex2x.(1)求函數(shù)f(x)的極值;5678解答解解f(x)ex2,令f(x
6、)0,得xln 2,令f(x)0,得xln 2,f(x)在(,ln 2)上單調遞減,在(ln 2,)上單調遞增,當xln 2時,f(x)有極小值f(ln 2)22ln 2,無極大值.(2)當a2ln 4且x0時,試比較f(x)與x2(a2)x1的大小.5678解答解解令g(x)f(x)x2(a2)x1exx2ax1,g(x)ex2xaf(x)a,g(x)minf(x)mina22ln 2a.a2ln 4,g(x)0,g(x)在(0,)上單調遞增,g(x)g(0)0,即f(x)x2(a2)x1.56786.已知函數(shù)f(x)ln xx3.(1)求函數(shù)f(x)的單調區(qū)間;解答令f(x)0,得x(1,
7、);令f(x)0;證明證明證明f(x)ln xx3,所以f(1)2,由(1)知,f(x)ln xx3在(1,)上單調遞增,所以當x(1,)時,f(x)f(1).即f(x)2,所以f(x)20.證明證明由(1)可知,當x(1,)時,f(x)f(1),即ln xx10,所以0ln xx1對一切x(1,)恒成立.因為n2,nN*,則有0ln n0時,g(x)0,求b的最大值;9101112解答解解因為g(x)f(2x)4bf(x)e2xe2x4b(exex)(8b4)x,g (x)2e2xe2x2b(exex)(4b2)2(exex2)(exex2b2).當b2時,g(x)0,當且僅當x0時,等號成
8、立,所以g(x)在(,)上單調遞增.而g(0)0,所以對任意x0,g(x)0.當b2時,若x滿足2exex2b2,而g(0)0,綜上,b的最大值為2.9101112所以ln 2的近似值為0.693.9101112解答9101112證明設f(x)的圖象與x軸相切于點(x0,0),解得ax01.9101112當0 x0,h(x)單調遞增;當x1時,h(x)0,所以m(x)單調遞增,9101112910111212.(2017瀘州沖刺)設函數(shù)f(x)exsin x(e為自然對數(shù)的底數(shù)),g(x)ax,F(xiàn)(x)f(x)g(x).(1)若x0是F(x)的極值點,且直線xt(t0)分別與函數(shù)f(x)和g(
9、x)的圖象交于P,Q,求P,Q兩點間的最短距離;9101112解答解解因為F(x)exsin xax,所以F(x)excos xa,因為x0是F(x)的極值點,所以F(0)11a0,解得a2.又當a2時,若x0,F(xiàn)(x)excos xa1120,所以F(x)在(,0)上單調遞減.若x0,(F(x)exsin x0,所以F(x)在(0,)上為增函數(shù),所以F(x)F(0)1120,所以F(x)在(0,)上為增函數(shù).9101112所以x0是F(x)的極小值點,所以a2符合題意,所以|PQ|etsin t2t.令h(x)exsin x2x,即h(x)excos x2,因為(h(x)exsin x,當x
10、0時,ex1,1sin x1,所以(h(x)exsin x0,所以h(x)excos x2在(0,)上單調遞增,所以h(x)excos x2h(0)0,所以當x0,)時,h(x)的最小值為h(0)1,所以|PQ|min1.9101112(2)若當x0時,函數(shù)yF(x)的圖象恒在yF(x)的圖象上方,求實數(shù)a的取值范圍.9101112解答解解令(x)F(x)F(x)exex2sin x2ax,則(x)exex2cos x2a,令S(x)(x)exex2sin x,因為S(x)exex2cos x0在x0時恒成立,所以函數(shù)S(x)在0,)上單調遞增,所以S(x)S(0)0在x0時恒成立.故函數(shù)(x
11、)在0,)上單調遞增,所以(x)(0)42a在x0,)時恒成立.當a2時,(x)0,(x)在0,)上單調遞增,即(x)(0)0.故當a2時,F(xiàn)(x)F(x)恒成立.9101112當a2時,因為(x)在0,)上單調遞增,所以總存在x0(0,),使(x)在區(qū)間0,x0)上,(x)0,導致(x)在區(qū)間0,x0上單調遞減,而(0)0,所以當x0,x0)時,(x)0,這與F(x)F(x)0對x0,)恒成立矛盾,所以a2不符合題意,故符合條件的a的取值范圍是(,2.9101112規(guī)范解答模板答題規(guī)范練例例(12分)已知函數(shù)f(x)ln xmxm,mR.(1)求函數(shù)f(x)的單調區(qū)間;(2)若f(x)0在x
12、(0,)上恒成立,求實數(shù)m的值;模板體驗審題路線圖審題路線圖規(guī)范解答規(guī)范解答評分標準評分標準當m0時,f(x)0恒成立,則函數(shù)f(x)在(0,)上單調遞增;(2)解解由(1)知,當m0時顯然不成立;只需mln m10即可,令g(x)xln x1,函數(shù)g(x)在(0,1)上單調遞減,在(1,)上單調遞增,所以g(x)ming(1)0.則若f(x)0在x(0,)上恒成立,m1.8分構建答題模板構建答題模板第一步求導數(shù)求導數(shù).第二步看性質看性質:根據(jù)導數(shù)討論函數(shù)的單調性、極值、最值等性質.第三步用性質用性質:將題中條件或要證結論轉化,如果成立或有解問題可轉化為函數(shù)的最值,證明不等式可利用函數(shù)單調性和
13、放縮法.第四步得結論得結論:審視轉化過程的合理性.第五步再反思再反思:回顧反思,檢查易錯點和步驟規(guī)范性.(1)當a為何值時,x軸為曲線yf(x)的切線;規(guī)范演練解解設曲線yf(x)與x軸相切于點(x0,0),則f(x0)0,f(x0)0.12345解答(2)用minm,n表示m,n中的最小值,設函數(shù)h(x)minf(x),g(x)(x0),討論h(x)零點的個數(shù).12345解答解解當x(1,)時,g(x)ln x0,從而h(x)minf(x),g(x)g(x)0.12345所以只需考慮f(x)在(0,1)上的零點個數(shù).若a3或a0,則f(x)3x2a在(0,1)內無零點,故f(x)在(0,1)
14、上單調.所以當a3時,f(x)在(0,1)有一個零點;當a0時,f(x)在(0,1)內沒有零點.123451234512345(1)求實數(shù)a的值及f(x)的極值;12345解答f(x)在點(1,f(1)處的切線與x軸平行,當0 x1時,f(x)0,當x1時,f(x)0,f(x)在(0,1)上單調遞增,在(1,)上單調遞減,故f(x)在x1處取得極大值1,無極小值.1234512345解答當x0時,f(x),由(1)得f(x)在(0,1)上單調遞增,由零點存在性原理知,f(x)在區(qū)間(0,1)上存在唯一零點,函數(shù)f(x)的圖象如圖所示.12345(1)求a的值;12345解答12345證明123
15、45當x1,)時,(ln x)23ln x30033,故g(x)在1,2)上單調遞增,在(2,)上單調遞減,123454.已知函數(shù)f(x)ax2bxln x(a,bR).(1)設b2a,求f(x)的零點的個數(shù);12345解答解解b2a,當0a4(1ln 2)時,函數(shù)f(x)沒有零點;當a4(1ln 2)時,函數(shù)f(x)有一個零點;當a4(1ln 2)時,函數(shù)f(x)有兩個零點.12345當a2時,f(x)在(0,)上單調遞減,f(x)有一個零點.f(x)只有一個零點.12345綜上,當0a4(1ln 2)時,函數(shù)f(x)無零點;當a4(1ln 2)時,函數(shù)f(x)有兩個零點.12345(2)設
16、a0,且對于任意x0,f(x)f(1),試比較ln a與2b的大小.12345解答解解由a0,且對于任意x0,f(x)f(1),可知函數(shù)f(x)在x1處取得最小值,整理得2ab1,即b12a.ln a(2b)ln a2(12a)ln a24a,1234512345故g(a)0,即24aln a2bln a0,即ln a2b.5.已知函數(shù)f(x)sin xax.(1)對于x(0,1),f(x)0恒成立,求實數(shù)a的取值范圍;解解由f(x)0,得sin xax0,再令m(x)xcos xsin x,則m(x)cos xxsin xcos xxsin x0,所以m(x)在(0,1)上單調遞減,所以m(x)m(0)0,所以g(x)0,則g(x)在(0,1)上單調遞減,所以g(x)g(1)sin 1,所以asin 1.12345解答(2)當a1時,令h(x)f(x)sin xln x1,求h(x)的最大值;解解當a1時,f(x)sin xx,所以h(x)ln xx1,由h(x)0,得x1.當x(0,1)時,h(x)0,h(x)在(0,1)上單調遞增;當x(1,)時,h(x)0,h(x)在(1,)上單調遞減.所以h(x)maxh(1)0.12345解答證明證明由(2)可知,當x(1,)時,h(x)0,即ln xx1,分別令n1,2,3,n,即所要證不等式成立.12345證明