十字頭滑套的機(jī)械工藝規(guī)程及夾具設(shè)計【鉆Φ22孔】【含CAD圖紙】
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
青島科技大學(xué)畢業(yè)設(shè)計(論文)
十字頭滑套制造工藝及夾具課程設(shè)計說明書
一、 設(shè)計目的:
1、機(jī)械制造工藝學(xué)課程設(shè)計是在學(xué)完了機(jī)械制造工藝學(xué)課程,進(jìn)行了生產(chǎn)實習(xí)以后進(jìn)行的下一個教學(xué)環(huán)節(jié),另一方面要求學(xué)生在設(shè)計中能初步學(xué)會綜合運(yùn)用過去的全部知識,另外也為以后畢業(yè)設(shè)計工作做一次綜合聯(lián)系,學(xué)生應(yīng)當(dāng)通過機(jī)械制造工藝學(xué)課程設(shè)計達(dá)到以下幾個目的:
2、能熟練運(yùn)用所學(xué)機(jī)械制造工藝課程中的基本理論,正確地解決一個零件在加工過程中的定位夾緊及工藝路線的合理安排。合理地選擇毛坯的制造方法、工藝設(shè)備及裝備等,保證零件的加工質(zhì)量。
3、提高夾具結(jié)構(gòu)設(shè)計能力,通過親手設(shè)計夾具,應(yīng)當(dāng)掌握如何根據(jù)被加工零件的要求設(shè)計車高效省力既經(jīng)濟(jì)又能保證加工質(zhì)量的夾具。
4、使用各種資料,掌握各種數(shù)據(jù)的查找方法及定位誤差的計算方法,合理地分配零件的加工誤差。
5、通過本次設(shè)計,使學(xué)生對零件工藝規(guī)程的編制及工藝裝備的實際有一個全面的了解,為畢業(yè)設(shè)計和以后工作打下良好的基礎(chǔ)。
二、設(shè)計要求:
機(jī)械制造工藝學(xué)課程設(shè)計題目一律定為:
制定十字頭滑套的機(jī)械加工工藝。
生產(chǎn)綱領(lǐng)為大批大量生產(chǎn)。
設(shè)計要求包括以下幾個部分:
1、零件總圖 一張
2、機(jī)械加工工序 八張
3、工序裝配結(jié)構(gòu)設(shè)計圖 一套
4、課程設(shè)計說明書 一份
課程設(shè)計題目由指導(dǎo)教師選定,其進(jìn)度時間大致分配如下:
1、熟悉零件,畫零件圖 10%
2、選擇加工方案,確定工藝路線,填寫工序卡 30%
3、工藝裝備設(shè)計 40%
4、編寫設(shè)計說明書 10%
5、準(zhǔn)備答辯和答辯 10%
三、設(shè)計內(nèi)容及步驟
1、對滑套進(jìn)行工藝分析畫滑套圖在得到設(shè)計題目之后,應(yīng)首先對滑套進(jìn)行工藝分析,其主要內(nèi)容包括:
(1) 對零件圖上技術(shù)要求進(jìn)行分析;
(2) 對零件主要加工表面的尺寸,形狀及位置精度、表面粗糙度、
設(shè)計基準(zhǔn)等進(jìn)行分析;
(3) 對零件的 材質(zhì)、結(jié)構(gòu)形狀、尺寸大小、剛性、硬度進(jìn)行分析,
明確被加工零件的工藝特點;零件圖應(yīng)按國家有關(guān)標(biāo)準(zhǔn)的規(guī)定,精心繪制,特殊情況經(jīng)知道同意外均按1:1繪出,如上圖為十字頭滑套的零件圖。
2、選擇毛坯的制造方式
毛坯的選擇應(yīng)以生產(chǎn)批量的大小,非加工表面的技術(shù)要求,以零件的復(fù)雜程度、技術(shù)要求的高低、材料等幾方面綜合考慮。在情況下由生產(chǎn)性質(zhì)決定,正確的選擇毛坯的制造方式,可以使工藝過程經(jīng)濟(jì)合理,故應(yīng)慎重考慮,并要加以滿足。
3、制定零件的機(jī)械加工工藝方案
(1)制定工藝路線,在對零件進(jìn)行分析的基礎(chǔ)上制定零件的工藝路線,對于比較復(fù)雜的零件,可以先考慮幾個加工方案,分析以后,在從中選擇最佳的加工方案。選擇定位基準(zhǔn),進(jìn)行必要的工序尺寸計算:根據(jù)粗、精基準(zhǔn)選擇原則-合理選擇各工序定位基準(zhǔn),當(dāng)某工序定位基準(zhǔn)與設(shè)計基準(zhǔn)不重合時,需對它的工序尺寸進(jìn)行換算。
(2) 機(jī)床、夾具、刀具、機(jī)床設(shè)備的選用既要保證加工質(zhì)量又要經(jīng)濟(jì)合理,在成批生產(chǎn)的情況下,一般是采用通用機(jī)床、部分專用機(jī)床、專用夾具、標(biāo)準(zhǔn)刀具、復(fù)合刀具、專用量具。
(3)加工余量及工序間尺寸與公差的確定,根據(jù)工藝路線安排,首先應(yīng)確定一個加工表面的工序加工余量,其工序尺寸公差按經(jīng)濟(jì)精度確定,一個表面的加工余量則為該表面各工序加工余量之和。在本設(shè)計中,可以根據(jù)指導(dǎo)教師的決定,計算1~2個表面的各工序間的加工余量及公差,其余表面可以從《機(jī)械制造工藝人員手冊》中查出。
(4) 切削用量的確定,在機(jī)床刀具,加工余量確定的基礎(chǔ)上要求用公式計算和查表相結(jié)合的辦法確定切削用量。
(5)畫毛坯圖,在加工余量確定的基礎(chǔ)上畫毛坯圖,要求毛坯圖與零件圖畫在一起,既零件——毛坯總圖,其中余量用雙點劃線表明,同時應(yīng)在圖上標(biāo)出毛坯的尺寸、公差、技術(shù)要求,毛坯制造分摸面、圓角半徑、撥摸的斜度等。
(6)繪制零件的機(jī)械加工工序卡片,將前述的各項內(nèi)容以及各項工序簡圖一并添人規(guī)定工序卡片上,卡片的尺寸規(guī)格統(tǒng)一。
(7) 對工序簡圖的要求
(a) 簡圖可按比例縮小,簡圖的加工表面用粗實線表示;
(b) 對定位夾緊表面應(yīng)以規(guī)定的符號表明;
(c) 表明個加工表面加工后的尺寸公差及表面粗糙度。
4、夾具設(shè)計
要求在課程設(shè)計中,設(shè)計為加工給定零件所必須的夾具一套,具體設(shè)計步驟如下;
(1)確定定位方案
① 分析零件圖和工藝文件,熟悉加工的技術(shù)要求;
② 分析工件在加工時學(xué)要限定的自由度;
③ 確定定位基準(zhǔn),本設(shè)計的基準(zhǔn)為直徑180孔的軸線;
④ 選擇和確定定位元件,本設(shè)計為一面一銷。
⑤ 畫定位簡圖(如下圖),首先畫出工件定位基準(zhǔn)與加工表面的理想位置,然后選則定位元件(一面兩銷);
⑥確定夾具在機(jī)床上的位置和對刀元件的位置;
⑦定位誤差的分析和計算。
(2)夾緊機(jī)構(gòu)的設(shè)計與定位方案設(shè)計密切相關(guān),夾緊機(jī)構(gòu)的優(yōu)劣決定夾具設(shè)計的成功與否,因為必須充分的研究討論以確定最佳方案,而不是及于畫圖。在確定夾具設(shè)計方案是應(yīng)該遵循下列原則:保證加工質(zhì)量,結(jié)構(gòu)簡單,操作省力可靠,效率高,制造成本低。其步驟如下:
① 合理的選擇力的作用點、方向、大小,保證夾緊時穩(wěn)定變形小。
② 設(shè)計夾緊力的大小。設(shè)計時所進(jìn)行的夾緊力實際上主要考慮在切削力、夾緊力作用下,按照靜力平衡條件求得理論夾緊力,為了保證夾緊力的安全可靠、實際的夾緊力比理論夾緊力大,安全系數(shù)可從有關(guān)手冊中查處。
③ 加緊機(jī)構(gòu)的設(shè)計,本設(shè)計的加緊機(jī)構(gòu)如下圖
④ 對主要零件(桿件)進(jìn)行強(qiáng)度計算,對于受壓細(xì)長桿,其穩(wěn)定性必須給與考慮。
⑤ 動力裝置的選擇及其他部件的選擇,在大批大量生產(chǎn)中廣泛采用起氣動、液壓和氣動—液壓作為夾緊機(jī)構(gòu)的動力裝置以實現(xiàn)加緊,如果采用手動,一定要滿足自鎖條件,對刀元件和導(dǎo)向元件為標(biāo)準(zhǔn)元件,學(xué)生可以從有關(guān)手冊中選出,并根據(jù)具體情況是否采用輔助支撐,夾具體是非標(biāo)準(zhǔn)元件,設(shè)計時要遵循下列原則。
(a) 有足夠的剛度和強(qiáng)度;
(b) 結(jié)構(gòu)緊湊并保證使用要求;
(c) 具有良好的機(jī)構(gòu)工藝性;
(d) 夾具體安放穩(wěn)定,裝卸方便。
在進(jìn)行夾具草圖設(shè)計時可以多考慮幾個方案,以便進(jìn)行分析,從中選擇最佳的方案。
(2)繪制總圖和零件圖,如下圖
①本設(shè)計中要求按1:1比例畫夾具總裝配圖,被加工零件在夾具上的位置,要用雙點劃線表示,夾緊機(jī)構(gòu)應(yīng)處于夾緊狀態(tài)。
②確定圖面,本設(shè)計為左視圖和俯視圖。
③工件的輪廓用雙點劃線表示,夾具在投影時可將工件看成“玻璃體”,不影響投影關(guān)系。
④按定位方案畫出定位元件,必要時用雙點劃線將刀具畫出。
⑤對于標(biāo)準(zhǔn)件和成套借用的部件在夾具總圖中只畫出外形輪廓。
⑥保證夾具機(jī)構(gòu)合理。
⑦保證機(jī)床與夾具、刀具與夾具的相對位置的正確性。
⑧運(yùn)動部件運(yùn)動靈活。
⑨夾具具有良好工藝性。
⑩運(yùn)動部件有潤滑裝置,排屑方便。
零件的選材,尺寸標(biāo)注及總裝技術(shù)要求合理(有關(guān)技術(shù)要求參閱教材)
致謝
四年的大學(xué)生涯即將結(jié)束,回想過去的歲月,老師同學(xué)都給我很大的幫助。在大家的指導(dǎo)下,使我充實地度過了這年輕時代。
首先,我感謝導(dǎo)師田緒東老師。在論文的選題、內(nèi)容規(guī)劃、方案指定和論文修改等過程中都傾注了導(dǎo)師的心血。導(dǎo)師的創(chuàng)新精神和飽滿的工作熱情使我深受教誨。
在四年的學(xué)習(xí)生活中,學(xué)校老師平易近人和誨人不倦的作風(fēng)給我留下了深刻的印象,老師們從各個方面都給了我很大的幫助和鼓勵,從他們那里我不僅學(xué)到了很多專業(yè)知識,也學(xué)會了怎樣做人。在即將畢業(yè)之際,謹(jǐn)向各位老師表示衷心的感謝!
同時感謝常德功老師,為我提供了良好的學(xué)習(xí)環(huán)境。在實驗室和大家共同度過了快樂而又充實三個月,使我能夠愉快而順利的完成論文。
此外,我要感謝一起生活四年的兄弟們。
最后 ,向所有關(guān)心和幫助過我的人們表示深深的謝意,并向他們致以最美好的祝愿!
參考文獻(xiàn):
[1] 藍(lán)恭謙.精密型材校直液壓機(jī)國內(nèi)外現(xiàn)狀及其發(fā)展趨勢[J].鍛壓機(jī)械.1991(4):48-52.
[2] 王漢功,趙文轉(zhuǎn).修復(fù)工程學(xué)[M].北京:機(jī)械工業(yè)出版社2000.1.1.202
[3] 譚偉.校直工藝的現(xiàn)狀調(diào)查[J].渝州: 渝州大學(xué)學(xué)報(自然科學(xué)版).1997.14(1):18~21.
[4] 欽明浩,柯尊忠,張向軍等.精密矯直機(jī)中軸類零件矯直工藝?yán)碚撗芯縖J].北京:機(jī)械工程學(xué)報.1997.33(2):48~53.
[5] 崔甫.矯直原理與矯直機(jī)械[M].北京:冶金工業(yè)出版社.2002.
[6] 機(jī)械加工工藝辭典編委會,丁年雄主編.機(jī)械加工工藝辭典北京:學(xué)苑出版社.1990.7. 1-63
[7] 崔甫 施東成.矯直機(jī)壓彎量汁算法的探討[J].冶金設(shè)備.1999
[8] 劉鴻文 主編 材料力學(xué)[M] 北京:高等教育出版社.2004.65-85
[9] 徐芝綸 編彈性力學(xué)[M].北京;高等教育出版社.1981. 12-126
[10] 成大先 編.機(jī)械設(shè)計手冊[M].北京:化學(xué)工業(yè)出版社,2002
[11] 崔甫.矯直理論與參數(shù)計算[M].北京:機(jī)械工業(yè)出版社,1994.12-19
[12] 丁曙光.精校機(jī)自動檢測系統(tǒng)中數(shù)據(jù)處理方法的研究[J].機(jī)械科學(xué)與技[13] 張利平.液壓氣動系統(tǒng)設(shè)計手冊[M].北京:機(jī)械工業(yè)出版社,1997.6.
[14] 張君安.機(jī)電一體化系統(tǒng)設(shè)計[M] 北京:兵器工業(yè)出版社.1997
[15] Makhnenko V I,Shekera V M,hortunatova N' N,Shkatov A S·Ershov yayuko. The efficiency of pulsed loading in the straightening of thin-walled welded structures
by the electrohvdrauiic pulsed method. Automatic Welding vo1.33, no.5:7一II .May 1980
[16] 蔡春源 主編.機(jī)電液設(shè)計手冊(中).北京:機(jī)械工業(yè)出版社. 1997
[17] 馮奇斌,呂國強(qiáng).精密校直機(jī)微機(jī)檢測系統(tǒng)的研究[J].北京:機(jī)械工藝師.2000.(9):36~37.
[18] 朱正德.自動校直一平衡校正技術(shù)在軸類零件制造中的應(yīng)用[[J].北京:組合機(jī)床與自
動化技術(shù)1999.4 39-P46
[19] Norden E. HUANG, Zhen SHEN, Steven R.LONG, etal. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary time series analysis Pros. Royal Society London, 1998.454 (A)
[20] Schwenzfeier W,F(xiàn)instermann G. Computer-aided straightening of round bars and
wires[J] Wire World International voi.28, no.5-6:80-3, May-June 1986
[21] 姜佩東.液壓與氣動技術(shù)[M].北京:高等教育出版社.1999
[22] 王廣懷.液壓技術(shù)應(yīng)用[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1998
[23] 王春行,液壓伺服控制系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,1989 146-180
[24] 孫桓 .機(jī)構(gòu)原理[M].北京:人民教育出版社,1982,10.
[25] 濮良貴 紀(jì)名剛 主編 機(jī)械設(shè)計[M] 北京:高等教育出版社.2004.90-98 271-300
[26] 張金蘭,夏長發(fā)編,中小型電機(jī)選型手冊[M] 北京:機(jī)械工業(yè)出版社,1998 23-45
[27] 王艷秋.電機(jī)及電力拖動[M].北京:化工出版社,2000 206-215
[28] 朱喜林 張代治 主編 機(jī)電一體化設(shè)計基礎(chǔ)[M] 北京:科學(xué)出版社,2004
[29]林友德、郭亨禮.傳感器及其應(yīng)用技術(shù).(第一版)[M].上海:上??茖W(xué)技術(shù)文獻(xiàn)出版社,1992 1.1-174
[30] 張琳娜,劉武發(fā).傳感器檢測技術(shù)及應(yīng)用[M] 北京:中國計量出版社 2001.59-68
[31] 袁希光主編.傳感器技術(shù)手冊[M].北京:國防工業(yè)出版社 2002 25-76
[32] 王化祥,張淑英編著.傳感器原理極其應(yīng)用[M].北京:天津大學(xué)出版社 1997
[33] 磨床設(shè)計制造(上、下).上海:上海人民出版社 1977
[34] 花國梁.精密測量技術(shù)[M].北京:中國計量出版社 2001
[35] 陳立德.機(jī)械設(shè)計基礎(chǔ)[M].高等教育出版社,1997
[36] 肖正義.滾珠絲杠副的發(fā)展趨勢[J].制造技術(shù)與機(jī)床.2000 (4): 11-13
[37] Zhai Hua, Jiang Danqing, Jiang Shouren,Stroke一controlled Precise Straightening
Technical Theory Based on Ramberg}-Osgood Equation In:Huang Wenhao eds. Proceedings
Of 1998 China-Japan Bilateral Symposium On Advanced Manufacturing Engineering(N)
[38] 李誠人,李啟瑞,王森等編著.現(xiàn)代機(jī)電控制系統(tǒng)[M] 西安:西北工業(yè)大學(xué)出版社,1999
[39] 楊渝欽主編,控制電機(jī)[M].北京:機(jī)械工業(yè)出版社,1990
[40] 王占林 液壓伺服控制[M] 北京:北京航空學(xué)院出版社,1987
[41] 武晉燮.幾何量精密測量技術(shù)[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1989.
[42] 朱伯申,張炬.數(shù)字式傳感器[M]. (第一版)北京:北京理工大學(xué)出版社,1996.1-6,24-125
[43] 孫傳友.孫曉斌,漢藻酋等.測控系統(tǒng)原理與設(shè)計北京[M].北京:航空航天大學(xué)出版社.2002 200-256
[45」唐賢員 劉岐山編著,傳感器原理及應(yīng)用[M].北京:電子科技大學(xué)出版社.2000
[44] 宋文緒 自動檢測技術(shù).北京:冶金工業(yè)出版社,2000.25-89
[46] 張福學(xué) 傳感器應(yīng)用及其電路精選(上).(第一版) [J].西安:電子科技大學(xué)出版社 1991 357-422
[47] 張勇主.電機(jī)拖動與控制[M].北京:機(jī)械工業(yè)出版社.2001
9
附錄二 :中文翻譯
通過夾具布局設(shè)計和夾緊力的優(yōu)化控制變形
摘 要
工件變形必須控制在數(shù)值控制機(jī)械加工過程之中。夾具布局和夾緊力是影響加工變形程度和分布的兩個主要方面。在本文提出了一種多目標(biāo)模型的建立,以減低變形的程度和增加均勻變形分布。有限元方法應(yīng)用于分析變形。遺傳算法發(fā)展是為了解決優(yōu)化模型。最后舉了一個例子說明,一個令人滿意的結(jié)果被求得, 這是遠(yuǎn)優(yōu)于經(jīng)驗之一的。多目標(biāo)模型可以減少加工變形有效地改善分布狀況。
關(guān)鍵詞:夾具布局;夾緊力; 遺傳算法;有限元方法
1 引言
夾具設(shè)計在制造工程中是一項重要的程序。這對于加工精度是至關(guān)重要。一個工件應(yīng)約束在一個帶有夾具元件,如定位元件,夾緊裝置,以及支撐元件的夾具中加工。定位的位置和夾具的支力,應(yīng)該從戰(zhàn)略的設(shè)計,并且適當(dāng)?shù)膴A緊力應(yīng)適用。該夾具元件可以放在工件表面的任何可選位置。夾緊力必須大到足以進(jìn)行工件加工。通常情況下,它在很大程度上取決于設(shè)計師的經(jīng)驗,選擇該夾具元件的方案,并確定夾緊力。因此,不能保證由此產(chǎn)生的解決方案是某一特定的工件的最優(yōu)或接近最優(yōu)的方案。因此,夾具布局和夾緊力優(yōu)化成為夾具設(shè)計方案的兩個主要方面。 定位和夾緊裝置和夾緊力的值都應(yīng)適當(dāng)?shù)倪x擇和計算,使由于夾緊力和切削力產(chǎn)生的工件變形盡量減少和非正式化。
夾具設(shè)計的目的是要找到夾具元件關(guān)于工件和最優(yōu)的夾緊力的一個最優(yōu)布局或方案。在這篇論文里, 多目標(biāo)優(yōu)化方法是代表了夾具布局設(shè)計和夾緊力的優(yōu)化的方法。 這個觀點是具有兩面性的。一,是盡量減少加工表面最大的彈性變形; 另一個是盡量均勻變形。 ANSYS軟件包是用來計算工件由于夾緊力和切削力下產(chǎn)生的變形。遺傳算法是MATLAB的發(fā)達(dá)且直接的搜索工具箱,并且被應(yīng)用于解決優(yōu)化問題。最后還給出了一個案例的研究,以闡述對所提算法的應(yīng)用。
2 文獻(xiàn)回顧
隨著優(yōu)化方法在工業(yè)中的廣泛運(yùn)用,近幾年夾具設(shè)計優(yōu)化已獲得了更多的利益。夾具設(shè)計優(yōu)化包括夾具布局優(yōu)化和夾緊力優(yōu)化。King 和 Hutter提出了一種使用剛體模型的夾具-工件系統(tǒng)來優(yōu)化夾具布局設(shè)計的方法。DeMeter也用了一個剛性體模型,為最優(yōu)夾具布局和最低的夾緊力進(jìn)行分析和綜合。他提出了基于支持布局優(yōu)化的程序與計算質(zhì)量的有限元計算法。李和melkote用了一個非線性編程方法和一個聯(lián)絡(luò)彈性模型解決布局優(yōu)化問題。兩年后, 他們提交了一份確定關(guān)于多鉗夾具受到準(zhǔn)靜態(tài)加工力的夾緊力優(yōu)化的方法。他們還提出了一關(guān)于夾具布置和夾緊力的最優(yōu)的合成方法,認(rèn)為工件在加工過程中處于動態(tài)。相結(jié)合的夾具布局和夾緊力優(yōu)化程序被提出,其他研究人員用有限元法進(jìn)行夾具設(shè)計與分析。蔡等對menassa和devries包括合成的夾具布局的金屬板材大會的理論進(jìn)行了拓展。秦等人建立了一個與夾具和工件之間彈性接觸的模型作為參考物來優(yōu)化夾緊力與,以盡量減少工件的位置誤差。Deng和melkote 提交了一份基于模型的框架以確定所需的最低限度夾緊力,保證了被夾緊工件在加工的動態(tài)穩(wěn)定。
大部分的上述研究使用的是非線性規(guī)劃方法,很少有全面的或近全面的最優(yōu)解決辦法。所有的夾具布局優(yōu)化程序必須從一個可行布局開始。此外,還得到了對這些模型都非常敏感的初步可行夾具布局的解決方案。夾具優(yōu)化設(shè)計的問題是非線性的,因為目標(biāo)的功能和設(shè)計變量之間沒有直接分析的關(guān)系。例如加工表面誤差和夾具的參數(shù)之間(定位、夾具和夾緊力)。
以前的研究表明,遺傳算法( GA )在解決這類優(yōu)化問題中是一種有用的技術(shù)。吳和陳用遺傳算法確定最穩(wěn)定的靜態(tài)夾具布局。石川和青山應(yīng)用遺傳算法確定最佳夾緊條件彈性工件。vallapuzha在基于優(yōu)化夾具布局的遺傳算法中使用空間坐標(biāo)編碼。他們還提出了針對主要競爭夾具優(yōu)化方法相對有效性的廣泛調(diào)查的方法和結(jié)果。這表明連續(xù)遺傳算法取得最優(yōu)質(zhì)的解決方案。krishnakumar和melkote 發(fā)展了一個夾具布局優(yōu)化技術(shù),用遺傳算法找到夾具布局,盡量減少由于在整個刀具路徑的夾緊和切削力造成的加工表面的變形。定位器和夾具位置被節(jié)點號碼所指定。krishnakumar等人還提出了一種迭代算法,盡量減少工件在整個切削過程之中由不同的夾具布局和夾緊力造成的彈性變形。Lai等人建成了一個分析模型,認(rèn)為定位和夾緊裝置為同一夾具布局的要素靈活的一部分。Hamedi 討論了混合學(xué)習(xí)系統(tǒng)用來非線性有限元分析與支持相結(jié)合的人工神經(jīng)網(wǎng)絡(luò)( ANN )和GA。人工神經(jīng)網(wǎng)絡(luò)被用來計算工件的最大彈性變形,遺傳算法被用來確定最佳鎖模力。Kumar建議將迭代算法和人工神經(jīng)網(wǎng)絡(luò)結(jié)合起來發(fā)展夾具設(shè)計系統(tǒng)。Kaya用迭代算法和有限元分析,在二維工件中找到最佳定位和夾緊位置,并且把碎片的效果考慮進(jìn)去。周等人。提出了基于遺傳算法的方法,認(rèn)為優(yōu)化夾具布局和夾緊力的同時,一些研究沒有考慮為整個刀具路徑優(yōu)化布局。一些研究使用節(jié)點數(shù)目作為設(shè)計參數(shù)。一些研究解決夾具布局或夾緊力優(yōu)化方法,但不能兩者都同時進(jìn)行。 有幾項研究摩擦和碎片考慮進(jìn)去了。
碎片的移動和摩擦接觸的影響對于實現(xiàn)更為現(xiàn)實和準(zhǔn)確的工件夾具布局校核分析來說是不可忽視的。因此將碎片的去除效果和摩擦考慮在內(nèi)以實現(xiàn)更好的加工精度是必須的。
在這篇論文中,將摩擦和碎片移除考慮在內(nèi),以達(dá)到加工表面在夾緊和切削力下最低程度的變形。一多目標(biāo)優(yōu)化模型被建立了。一個優(yōu)化的過程中基于GA和有限元法提交找到最佳的布局和夾具夾緊力。最后,結(jié)果多目標(biāo)優(yōu)化模型對低剛度工件而言是比較單一的目標(biāo)優(yōu)化方法、經(jīng)驗和方法。
3 多目標(biāo)優(yōu)化模型夾具設(shè)計
一個可行的夾具布局必須滿足三限制。首先,定位和夾緊裝置不能將拉伸勢力應(yīng)用到工件;第二,庫侖摩擦約束必須施加在所有夾具-工件的接觸點。夾具元件-工件接觸點的位置必須在候選位置。為一個問題涉及夾具元件-工件接觸和加工負(fù)荷步驟,優(yōu)化問題可以在數(shù)學(xué)上仿照如下:
這里的△表示加工區(qū)域在加工當(dāng)中j次步驟的最高彈性變形。
其中
是△的平均值;
是正常力在i次的接觸點;
μ是靜態(tài)摩擦系數(shù);
fhi是切向力在i次的接觸點;
pos(i)是i次的接觸點;
是可選區(qū)域的i次接觸點;
整體過程如圖1所示,一要設(shè)計一套可行的夾具布局和優(yōu)化的夾緊力。最大切削力在切削模型和切削力發(fā)送到有限元分析模型中被計算出來。優(yōu)化程序造成一些夾具布局和夾緊力,同時也是被發(fā)送到有限元模型中。在有限元分析座內(nèi),加工變形下,切削力和夾緊力的計算方法采用有限元方法。根據(jù)某夾具布局和變形,然后發(fā)送給優(yōu)化程序,以搜索為一優(yōu)化夾具方案。
圖1 夾具布局和夾緊力優(yōu)化過程
4 夾具布局設(shè)計和夾緊力的優(yōu)化
4.1 遺傳算法
遺傳算法( GA )是基于生物再生產(chǎn)過程的強(qiáng)勁,隨機(jī)和啟發(fā)式的優(yōu)化方法。基本思路背后的遺傳算法是模擬“生存的優(yōu)勝劣汰“的現(xiàn)象。每一個人口中的候選個體指派一個健身的價值,通過一個功能的調(diào)整,以適應(yīng)特定的問題。遺傳算法,然后進(jìn)行復(fù)制,交叉和變異過程消除不適宜的個人和人口的演進(jìn)給下一代。人口足夠數(shù)目的演變基于這些經(jīng)營者引起全球健身人口的增加和優(yōu)勝個體代表全最好的方法。
遺傳算法程序在優(yōu)化夾具設(shè)計時需夾具布局和夾緊力作為設(shè)計變量,以生成字符串代表不同的布置。字符串相比染色體的自然演變,以及字符串,它和遺傳算法尋找最優(yōu),是映射到最優(yōu)的夾具設(shè)計計劃。在這項研究里,遺傳算法和MATLAB的直接搜索工具箱是被運(yùn)用的。
收斂性遺傳算法是被人口大小、交叉的概率和概率突變所控制的 。只有當(dāng)在一個人口中功能最薄弱功能的最優(yōu)值沒有變化時,nchg達(dá)到一個預(yù)先定義的價值ncmax ,或有多少幾代氮,到達(dá)演化的指定數(shù)量上限nmax, 沒有遺傳算法停止。有五個主要因素,遺傳算法,編碼,健身功能,遺傳算子,控制參數(shù)和制約因素。 在這篇論文中,這些因素都被選出如表1所列。
表1 遺傳算法參數(shù)的選擇
由于遺傳算法可能產(chǎn)生夾具設(shè)計字符串,當(dāng)受到加工負(fù)荷時不完全限制夾具。這些解決方案被認(rèn)為是不可行的,且被罰的方法是用來驅(qū)動遺傳算法,以實現(xiàn)一個可行的解決辦法。1夾具設(shè)計的計劃被認(rèn)為是不可行的或無約束,如果反應(yīng)在定位是否定的。在換句話說,它不符合方程(2)和(3)的限制。罰的方法基本上包含指定計劃的高目標(biāo)函數(shù)值時不可行的。因此,驅(qū)動它在連續(xù)迭代算法中的可行區(qū)域。對于約束(4),當(dāng)遺傳算子產(chǎn)生新個體或此個體已經(jīng)產(chǎn)生,檢查它們是否符合條件是必要的。真正的候選區(qū)域是那些不包括無效的區(qū)域。在為了簡化檢查,多邊形是用來代表候選區(qū)域和無效區(qū)域的。多邊形的頂點是用于檢查?!癷npolygon ”在MATLAB的功能可被用來幫助檢查。
4.2 有限元分析
ANSYS軟件包是用于在這方面的研究有限元分析計算。有限元模型是一個考慮摩擦效應(yīng)的半彈性接觸模型,如果材料是假定線彈性。如圖2所示,每個位置或支持,是代表三個正交彈簧提供的制約。
圖2 考慮到摩擦的半彈性接觸模型
在x , y和z 方向和每個夾具類似,但定位夾緊力在正常的方向。彈力在自然的方向即所謂自然彈力,其余兩個彈力即為所謂的切向彈力。接觸彈簧剛度可以根據(jù)向赫茲接觸理論計算如下:
隨著夾緊力和夾具布局的變化,接觸剛度也不同,一個合理的線性逼近的接觸剛度可以從適合上述方程的最小二乘法得到。連續(xù)插值,這是用來申請工件的有限元分析模型的邊界條件。在圖3中說明了夾具元件的位置,顯示為黑色界線。每個元素的位置被其它四或六最接近的鄰近節(jié)點所包圍。
圖3 連續(xù)插值
這系列節(jié)點,如黑色正方形所示,是(37,38,31和30 ),(9,10 ,11 , 18,17號和16號)和( 26,27 ,34 , 41,40和33 )。這一系列彈簧單元,與這些每一個節(jié)點相關(guān)聯(lián)。對任何一套節(jié)點,彈簧常數(shù)是:
這里,
kij 是彈簧剛度在的j -次節(jié)點周圍i次夾具元件,
Dij 是i次夾具元件和的J -次節(jié)點周圍之間的距離,
ki是彈簧剛度在一次夾具元件位置,
ηi 是周圍的i次夾具元素周圍的節(jié)點數(shù)量
為每個加工負(fù)荷的一步,適當(dāng)?shù)倪吔鐥l件將適用于工件的有限元模型。在這個工作里,正常的彈簧約束在這三個方向(X , Y , Z )的和在切方向切向彈簧約束,(X , Y )。夾緊力是適用于正常方向(Z)的夾緊點。整個刀具路徑是模擬為每個夾具設(shè)計計劃所產(chǎn)生的遺傳算法應(yīng)用的高峰期的X ,Y ,z切削力順序到元曲面,其中刀具通行證。在這工作中,從刀具路徑中歐盟和去除碎片已經(jīng)被考慮進(jìn)去。在機(jī)床改變幾何數(shù)值過程中,材料被去除,工件的結(jié)構(gòu)剛度也改變。
因此,這是需要考慮碎片移除的影響。有限元分析模型,分析與重點的工具運(yùn)動和碎片移除使用的元素死亡技術(shù)。在為了計算健身價值,對于給定夾具設(shè)計方案,位移存儲為每個負(fù)載的一步。那么,最大位移是選定為夾具設(shè)計計劃的健身價值。
遺傳算法的程序和ANSYS之間的互動實施如下。定位和夾具的位置以及夾緊力這些參數(shù)寫入到一個文本文件。那個輸入批處理文件ANSYS軟件可以讀取這些參數(shù)和計算加工表面的變形。 因此, 健身價值觀,在遺傳算法程序,也可以寫到當(dāng)前夾具設(shè)計計劃的一個文本文件。
當(dāng)有大量的節(jié)點在一個有限元模型時,計算健身價值是很昂貴的。因此,有必要加快計算遺傳算法程序。作為這一代的推移,染色體在人口中取得類似情況。在這項工作中,計算健身價值和染色體存放在一個SQL Server數(shù)據(jù)庫。遺傳算法的程序,如果目前的染色體的健身價值已計算之前,先檢查;如果不,夾具設(shè)計計劃發(fā)送到ANSYS,否則健身價值觀是直接從數(shù)據(jù)庫中取出。嚙合的工件有限元模型,在每一個計算時間保持不變。每計算模型間的差異是邊界條件,因此,網(wǎng)狀工件的有限元模型可以用來反復(fù)“恢復(fù)”ANSYS 命令。
5 案例研究
一個關(guān)于低剛度工件的銑削夾具設(shè)計優(yōu)化問題是被顯示在前面的論文中,并在以下各節(jié)加以表述。
5.1 工件的幾何形狀和性能
工件的幾何形狀和特點顯示在圖4中,空心工件的材料是鋁390與泊松比0.3和71Gpa的楊氏模量。外廓尺寸152.4mm×127mm*76.2mm.該工件頂端內(nèi)壁的三分之一是經(jīng)銑削及其刀具軌跡,如圖4 所示。夾具元件中應(yīng)用到的材料泊松比0.3和楊氏模量的220的合金鋼。
圖4 空心工件
5.2 模擬和加工的運(yùn)作
舉例將工件進(jìn)行周邊銑削,加工參數(shù)在表2中給出?;谶@些參數(shù),切削力的最高值被作為工件內(nèi)壁受到的表面載荷而被計算和應(yīng)用,當(dāng)工件處于330.94 n(切)、398.11 N (下徑向)和22.84 N (下軸) 的切削位置時。整個刀具路徑被26個工步所分開,切削力的方向被刀具位置所確定
表2加工參數(shù)和條件
。
5.3 夾具設(shè)計方案
夾具在加工過程中夾緊工件的規(guī)劃如圖5所示。
圖5 定位和夾緊裝置的可選區(qū)域
一般來說, 3-2-1定位原則是夾具設(shè)計中常用的。夾具底板限制三個自由度,在側(cè)邊控制兩個自由度。這里,在Y=0mm截面上使用了4個定點(L1,L2 , L3和14 ),以定位工件并限制2自由度;并且在Y=127mm的相反面上,兩個壓板(C1,C2)夾緊工件。在正交面上,需要一個定位元件限制其余的一個自由度,這在優(yōu)化模型中是被忽略的。在表3中給出了定位加緊點的坐標(biāo)范圍。
表3 設(shè)計變量的約束
由于沒有一個簡單的一體化程序確定夾緊力,夾緊力很大部分(6673.2N)在初始階段被假設(shè)為每一個夾板上作用的力。且從符合例5的最小二乘法,分別由4.43×107 N/m 和5.47×107 N/m得到了正常切向剛度。
5.4 遺傳控制參數(shù)和懲罰函數(shù)
在這個例子中,用到了下列參數(shù)值:Ps=30, Pc=0.85, Pm=0.01, Nmax=100和Ncmax=20.關(guān)于f1和σ的懲罰函數(shù)是
這里fv可以被F1或σ代表。當(dāng)nchg達(dá)到6時,交叉和變異的概率將分別改變成0.6和0.1.
5.5 優(yōu)化結(jié)果
連續(xù)優(yōu)化的收斂過程如圖6所示。且收斂過程的相應(yīng)功能(1)和(2)如圖7、圖8所示。優(yōu)化設(shè)計方案在表4中給出。
圖6 夾具布局和夾緊力優(yōu)化程序的收斂性遺傳算法 圖7 第一個函數(shù)值的收斂
圖8第二個函數(shù)值的收斂性
表4 多目標(biāo)優(yōu)化模型的結(jié)果 表5 各種夾具設(shè)計方案結(jié)果進(jìn)行比較,
5.6 結(jié)果的比較
從單一目標(biāo)優(yōu)化和經(jīng)驗設(shè)計中得到的夾具設(shè)計的設(shè)計變量和目標(biāo)函數(shù)值,如表5所示。單一目標(biāo)優(yōu)化的結(jié)果,在論文中引做比較。在例子中,與經(jīng)驗設(shè)計相比較,單一目標(biāo)優(yōu)化方法有其優(yōu)勢。最高變形減少了57.5 %,均勻變形增強(qiáng)了60.4 %。最高夾緊力的值也減少了49.4 % 。從多目標(biāo)優(yōu)化方法和單目標(biāo)優(yōu)化方法的比較中可以得出什么呢?最大變形減少了50.2% ,均勻變形量增加了52.9 %,最高夾緊力的值減少了69.6 % 。加工表面沿刀具軌跡的變形分布如圖9所示。很明顯,在三種方法中,多目標(biāo)優(yōu)化方法產(chǎn)生的變形分布最均勻。
與結(jié)果比較,我們確信運(yùn)用最佳定位點分布和最優(yōu)夾緊力來減少工件的變形。圖10示出了一實例夾具的裝配。
圖9沿刀具軌跡的變形分布
圖10 夾具配置實例
6 結(jié)論
本文介紹了基于GA和有限元的夾具布局設(shè)計和夾緊力的優(yōu)化程序設(shè)計。優(yōu)化程序是多目標(biāo)的:最大限度地減少加工表面的最高變形和最大限度地均勻變形。ANSYS軟件包已經(jīng)被用于
健身價值的有限元計算。對于夾具設(shè)計優(yōu)化的問題,GA和有限元分析的結(jié)合被證明是一種很有用的方法。
在這項研究中,摩擦的影響和碎片移動都被考慮到了。為了減少計算的時間,建立了一個染色體的健身數(shù)值的數(shù)據(jù)庫,且網(wǎng)狀工件的有限元模型是優(yōu)化過程中多次使用的。
傳統(tǒng)的夾具設(shè)計方法是單一目標(biāo)優(yōu)化方法或經(jīng)驗。此研究結(jié)果表明,多目標(biāo)優(yōu)化方法比起其他兩種方法更有效地減少變形和均勻變形。這對于在數(shù)控加工中控制加工變形是很有意義的。
參考文獻(xiàn)
1、 King LS,Hutter( 1993年) 自動化裝配線上棱柱工件最佳裝夾定位生成的理論方法。De Meter EC (1995) 優(yōu)化機(jī)床夾具表現(xiàn)的Min - Max負(fù)荷模型。
2、 De Meter EC (1998) 快速支持布局優(yōu)化。Li B, Melkote SN (1999) 通過夾具布局優(yōu)化改善工件的定位精度。
3、 Li B, Melkote SN (2001) 夾具夾緊力的優(yōu)化和其對工件的定位精度的影響。
4、 Li B, Melkote SN (1999) 通過夾具布局優(yōu)化改善工件的定位精度。
5、 Li B, Melkote SN (2001) 夾具夾緊力的優(yōu)化和其對工件定位精度的影響。
6、 Li B, Melkote SN (2001) 最優(yōu)夾具設(shè)計計算工件動態(tài)的影響。
7、 Lee JD, Haynes LS (1987) 靈活裝夾系統(tǒng)的有限元分析。
8、 Menassa RJ, DeVries WR (1991) 運(yùn)用優(yōu)化方法在夾具設(shè)計中選擇支位。
9、 Cai W, Hu SJ, Yuan JX (1996) 變形金屬板材的裝夾的原則、算法和模擬。
10、 Qin GH, Zhang WH, Zhou XL (2005) 夾具裝夾方案的建模和優(yōu)化設(shè)計。
11、Deng HY, Melkote SN (2006) 動態(tài)穩(wěn)定裝夾中夾緊力最小值的確定。
12、Wu NH, Chan KC (1996) 基于遺傳算法的夾具優(yōu)化配置方法。
13、Ishikawa Y, Aoyama T(1996) 借助遺傳算法對裝夾條件的優(yōu)化。
14、Vallapuzha S, De Meter EC, Choudhuri S, et al (2002) 一項關(guān)于空間坐標(biāo)對基于遺傳算法的夾具優(yōu)化問題的作用的調(diào)查。
15、Vallapuzha S, De Meter EC, Choudhuri S, et al (2002) 夾具布局優(yōu)化方法成效的調(diào)查。
16、Kulankara K, Melkote SN (2000) 利用遺傳算法優(yōu)化加工夾具的布局。
17、Kulankara K, Satyanarayana S, Melkote SN (2002) 利用遺傳算法優(yōu)化夾緊布局和夾緊力。
18、Lai XM, Luo LJ, Lin ZQ (2004) 基于遺傳算法的柔性裝配夾具布局的建模與優(yōu)化。
19、Hamedi M (2005) 通過一種人工神經(jīng)網(wǎng)絡(luò)和遺傳算法混合的系統(tǒng)設(shè)計智能夾具。
20、Kumar AS, Subramaniam V, Seow KC (2001) 采用遺傳算法固定裝置的概念設(shè)計。
21、Kaya N (2006) 利用遺傳算法優(yōu)化加工夾具的定位和夾緊點。
22、Zhou XL, Zhang WH, Qin GH (2005) 遺傳算法用于優(yōu)化夾具布局和夾緊力。
23、Kaya N, ?ztürk F (2003) 碎片位移和摩擦接觸的運(yùn)用對工件夾具布局的校核。
62
ORIGINAL ARTICLEDeformation control through fixture layout designand clamping force optimizationWeifang Chen&Lijun Ni&Jianbin XueReceived: 2 February 2007 /Accepted: 4 July 2007#Springer-Verlag London Limited 2007Abstract Workpiece deformation must be controlled in thenumerical control machining process. Fixture layout andclamping force are two main aspects that influence thedegree and distribution of machining deformation. In thispaper, a multi-objective model was established to reducethe degree of deformation and to increase the distributinguniformity of deformation. The finite element method wasemployed to analyze the deformation. A genetic algorithmwas developed to solve the optimization model. Finally, anexample illustrated that a satisfactory result was obtained,which is far superior to the experiential one. The multi-objective model can reduce the machining deformationeffectively and improve the distribution condition.Keywords Fixturelayout.Clampingforce.Geneticalgorithm.Finiteelementmethod1 IntroductionFixture design is an important procedure in manufacturingengineering. It is critical to machining accuracy. Aworkpiece should be constrained in a fixture duringmachining with fixture elements such as locators, clamps,and supports. The positions of locators, clamps andsupports should be strategically designed and appropriateclamping forces should be applied. The fixture elementscan be placed anywhere within the candidate regions on theworkpiece surfaces. Clamping force must be large enoughto hold the workpiece during machining. Typically, it reliesheavily on the designers experience to choose the positionsof the fixture elements and to determine the clampingforces. Thus there is no assurance that the resultant solutionis optimal or near optimal for a given workpiece.Consequently, the fixture layout and the clamping forceoptimization become two main aspects in fixture design.The positions of locators and clamps, and the values ofclamping force should be properly selected and calculatedso that the workpiece deformation due to clamping andcutting force is minimized and uniformed.The objective of fixture design is to find an optimallayout or positions of the fixture elements around theworkpiece and optimal clamping force. In this paper, amulti-objective optimization method is presented for thefixture layout design and clamping force optimization.The objective is two folded. One is to minimize themaximum elastic deformation of the machined surfaces,and another is to maximize the uniformity of deforma-tion. The ANSYS software package is used to calculatethe deformation of the workpiece under given clampingforce and cutting force. A genetic algorithm is devel-oped, and the direct search toolbox of MATLAB isemployed to solve the optimization problem. Finally, acase study is given to illustrate the application of theproposed approach.2 Literature reviewWith the wide applications of optimization methods inindustry, fixture design optimization has gained moreinterests in recent years. Fixture design optimizationincludes fixture layout optimization and clamping forceoptimization. King and Hutter presented a method forInt J Adv Manuf TechnolDOI 10.1007/s00170-007-1153-2W. Chen:L. Ni:J. Xue (*)College of Mechanical and Electronical Engineering,Nanjing University of Aeronautics and Astronautics,No. 29, Yudao Street,Nanjing 210016, Chinae-mail: optimal fixture layout design using a rigid body model of thefixture-workpiece system 1. DeMeter also used a rigidbody model for the analysis and synthesis of optimalfixture layouts and minimum clamping force 2. Hepresented a finite element method (FEM) based supportlayout optimization procedure with computationally attrac-tive qualities 3. Li and Melkote used a nonlinearprogramming method and a contact elasticity model tosolve the layout optimization problem 4. Two years later,they presented a method for determining the optimalclamping force for a multiple clamp fixture subjected toquasi-static machining force 5. They also presented anoptimal synthesis approach of fixture layout and clampingforce that considers workpiece dynamics during machining6. A combined fixture layout and clamping forceoptimization procedure was presented. Other researchers7, 8 used the FEM for fixture design and analysis. Cai etal. 9 extended the work of Menassa and DeVries 8 toinclude synthesis of fixture layout for sheet metal assembly.Qin et al. 10 established an elastic contact model betweenclamp and workpiece to optimize the clamping force withan objective to minimize the position error of theworkpiece. Deng and Melkote 11 presented a model-based framework for determining the minimum requiredclamping force, which ensures the dynamic stability of afixtured workpiece during machining.Most of the above studies used nonlinear programmingmethods, which seldom gave global or near-global opti-mum solutions. All of the fixture layout optimizationprocedures must start with an initial feasible layout. Inaddition, solutions obtained from these models are verysensitive to the initial feasible fixture layout. The problemof fixture design optimization is nonlinear because there isno direct analytical relationship between the objectivefunction and design variables, i.e. between the machinedsurface error and the fixture parameters (positions of locatorand clamp, and clamping forces).Previous researchers had shown that genetic algorithm(GA) was a useful technique in solving such optimiza-tion problems. Wu and Chan 12 used the GA todetermine the most statically stable fixture layout. Ishikawaand Aoyama 13 applied GA to determine the optimalclamping condition for an elastic workpiece. Vallapuzha etal. 14 used spatial coordinates to encode in the GA basedoptimization of fixture layout. They also presented themethodology and results of an extensive investigation intothe relative effectiveness of the main competing fixtureoptimization methods, which showed that continuous GAyielded the best quality solutions 15. Krishnakumar andMelkote 16 developed a fixture layout optimizationtechnique that used GA to find the fixture layout thatminimized the deformation of the machined surface due toclamping and cutting force over the entire tool path.Locator and clamp positions were specified with nodenumbers. Krishnakumar et al. 17 presented an iterativealgorithm that minimized the workpiece elastic deformationfor the entire cutting process by alternatively varying thefixture layout and clamping force. Lai et al. 18 set up ananalysis model that treated locator and clamps as the samefixture layout elements for the flexible part deformation.Hamedi 19 discussed a hybrid learning system that usednonlinear FEA with a supportive combination of artificialneural network (ANN) and GA. The ANN was used tocalculate workpiece maximum elastic deformation, the GAwas used to determine the optimum clamping forces.Kumar 20 proposed to combine the GA and ANN todevelop a fixture design system. Kaya 21 used the GAand FEM to find the optimal locators and clampingpositions in 2D workpiece and took chip removal effectsinto account. Zhou et al. 22 presented a GA based methodthat optimized fixture layout and clamping force simulta-neously. Some of the studies did not consider theoptimization of the layout for entire tool path. Some ofthe studies used node numbers as design parameters.Some of the studies addressed fixture layout or clampingforce optimization methods but not both simultaneously.And there were few studies taking friction and chipremoval into account. The effects of chip removal andfrictional contact cannot be neglected for achieving amore realistic and accurate workpiece-fixture layoutverification analysis 23, so it is essential to take chipremoval effects and friction effect into account to achieve abetter machining accuracy.In this paper, the friction and chip removal are takeninto account to achieve the minimum degree of themaximum deformation of the machined surfaces underclamping and cutting force and to uniform the deforma-tion. A multi-objective optimization model is established.An optimization process based on GA and FEM ispresented to find the optimal fixture layout and clampingforce. Finally, the result of the multi-objective optimiza-tion model is compared with the single objectiveoptimization method and the experience method for a lowrigidity workpiece.3 A multi-objective optimization model for fixturedesignA feasible fixture layout has to satisfy three constraints.First, the locators and clamps cannot apply tensile forces onthe workpiece. Second, the Coulomb friction constraintmust be satisfied at all fixture-workpiece contact points.The positions of fixture element-workpiece contact pointsmust be in the candidate regions. For a problem involving pfixture element-workpiece contacts and n machining loadInt J Adv Manuf Technolsteps, the optimization problem can be mathematicallymodeled as followsmin max1jj; 2jj;:; j?;:; njj? s?;j 1;2;:;n1Subject tom Fnijj ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiF2ti F2hiq2Fni? 03pos i 2 V i ;i 1;2;:;p4where jrefers to the maximum elastic deformation at amachining region in the j-th step of the machiningoperation,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnj1j ? ?2?nvuutis the average of jFniis the normal force at the i-th contact pointis the static coefficient of frictionFti;Fhiare the tangential forces at the i-th contact pointpos(i)is the i-th contact pointV(i)is the candidate region of the i-th contact point.The overall process is illustrated in Fig. 1 to design afeasible fixture layout and to optimize the clamping force.The maximal cutting force is calculated in cutting modeland the force is sent to finite element analysis (FEA) model.Optimization procedure creates some fixture layout andclamping force which are sent to the FEA model too. InFEA block, machining deformation under the cutting forceand the clamping force is calculated using finite elementmethod under a certain fixture layout, and the deformationis then sent to optimization procedure to search for anoptimal fixture scheme.4 Fixture layout design and clamping force optimization4.1 A genetic algorithmGenetic algorithms (GA) are robust, stochastic and heuristicoptimization methods based on biological reproductionprocesses. The basic idea behind GA is to simulate “survivalof the fittest” phenomena. Each individual candidate in thepopulation is assigned a fitness value through a fitnessfunction tailored to the specific problem. The GA thenconducts reproduction, crossover and mutation processesto eliminate unfit individuals and the population evolvesto the next generation. Sufficient number of evolutions ofthe population based on these operators lead to anincrease in the global fitness of the population and thefittest individual represents the best solution.The GA procedure to optimize fixture design takesfixture layout and clamping force as design variables togenerate strings which represent different layouts. Thestrings are compared to the chromosomes of naturalevolution, and the string, which GA find optimal, ismapped to the optimal fixture design scheme. In this study,the genetic algorithm and direct search toolbox of MATLABare employed.The convergence of GA is controlled by the populationsize (Ps), the probability of crossover (Pc) and theprobability of mutations (Pm). Only when no change inthe best value of fitness function in a population, Nchg,reaches a pre-defined value NCmax, or the number ofgenerations, N, reaches the specified maximum number ofevolutions, Nmax., did the GA stop.There are five main factors in GA, encoding, fitnessfunction, genetic operators, control parameters and con-straints. In this paper, these factors are selected as what islisted in Table 1.Since GA is likely to generate fixture design strings thatdo not completely restrain the fixture when subjected tomachining loads. These solutions are considered infeasibleand the penalty method is used to drive the GA to a feasiblesolution. A fixture design scheme is considered infeasible orunconstrained if the reactions at the locators are negative, inother words, it does not satisfy the constraints in equations(2) and (3). The penalty method essentially involvesMachiningProcess ModelFEAOptimizationprocedurecutting forcesfitnessOptimization resultFixture layout and clamping force Fig. 1 Fixture layout and clamp-ing force optimization processTable 1 Selection of GAs parametersFactorsDescriptionEncodingRealScalingRankSelectionRemainderCrossoverIntermediateMutationUniformControl parameterSelf-adaptingInt J Adv Manuf Technolassigning a high objective function value to the scheme thatis infeasible, thus driving it to the feasible region insuccessive iterations of GA. For constraint (4), when newindividuals are generated by genetic operators or the initialgeneration is generated, it is necessary to check up whetherthey satisfy the conditions. The genuine candidate regionsare those excluding invalid regions. In order to simplify thechecking, polygons are used to represent the candidateregions and invalid regions. The vertex of the polygons areused for the checking. The “inpolygon” function inMATLAB could be used to help the checking.4.2 Finite element analysisThe software package of ANSYS is used for FEAcalculations in this study. The finite element model is asemi-elastic contact model considering friction effect,where the materials are assumed linearly elastic. As shownin Fig. 2, each locator or support is represented by threeorthogonal springs that provide restrains in the X, Y and Zdirections and each clamp is similar to locator but clampingforce in normal direction. The spring in normal direction iscalled normal spring and the other two springs are calledtangential springs.The contact spring stiffness can be calculated accordingto the Herz contact theory 8 as followskiz16R?iE?2i9?13fiz13kiz kiy6E?i2?vfiGfi2?vwiGwi?1? kiz8:5wherekiz, kix, kiyare the tangential and normal contactstiffness,1R?i1Rwi1Rfiis the nominal contact radius,1E?i1?V2wiEwi1?V2fiEfiis the nominal contact elastic modulus,Rwi, Rfiare radius of the i-th workpiece andfixture element,Ewi, Efiare Youngs moduli for the i-thworkpiece and fixture materials,wi, fiare Poisson ratios for the i-th workpieceand fixture materials,Gwi, Gfiare shear moduli for the i-th workpieceand fixture materials and fizis thereaction force at the i-th contact point inthe Z direction.Contact stiffness varies with the change of clampingforce and fixture layout. A reasonable linear approximationof the contact stiffness can be obtained from a least-squaresfit to the above equation.The continuous interpolation, which is used to applyboundary conditions to the workpiece FEA model, isFig. 2 Semi-elastic contact model taking friction into accountSpring positionFixture element position12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849Fig. 3 Continuous interpolationFig. 4 A hollow workpieceTable 2 Machining parameters and conditionsParameterDescriptionType of operationEnd millingCutter diameter25.4 mmNumber of flutes4Cutter RPM500Feed0.1016 mm/toothRadial depth of cut2.54 mmAxial depth of cut25.4 mmRadial rake angle10Helix angle30Projection length92.07 mmInt J Adv Manuf Technolillustrated in Fig. 3. Three fixture element locations areshown as black circles. Each element location is surroundedby its four or six nearest neighboring nodes. These sets ofnodes, which are illustrated by black squares, are 37, 38,31 and 30, 9, 10, 11, 18, 17 and 16 and 26, 27, 34, 41,40 and 33. A set of spring elements are attached to each ofthese nodes. For any set of nodes, the spring constant iskijdijPk2hidikki6wherekijis the spring stiffness at the j-th node surrounding thei-th fixture element,dijis the distance between the i-th fixture element and thej-th node surrounding it,kiis the spring stiffness at the i-th fixture elementlocation.iis the number of nodes surrounding the i-th fixtureelement location.For each machining load step, appropriate boundaryconditions have to be applied to the finite element model ofthe workpiece. In this work, the normal springs areconstrained in the three directions (X, Y, Z) and thetangential springs are constrained in the tangential direc-tions (X, Y). Clamping forces are applied in the normaldirection (Z) at the clamp nodes. The entire tool path issimulated for each fixture design scheme generated by theGA by applying the peak X, Y, Z cutting forces sequentiallyto the element surfaces over which the cutter passes 23.In this work, chip removal from the tool path is takeninto account. The removal of the material during machiningalters the geometry, so does the structural stiffness of theworkpiece. Thus, it is necessary to consider chip removalaffects. The FEA model is analyzed with respect to toolmovement and chip removal using the element deathtechnique. In order to calculate the fitness value for a givenfixture design scheme, displacements are stored for eachload step. Then the maximum displacement is selected asfitness value for this fixture design scheme.The interaction between GA procedure and ANSYS isimplemented as follows. Both the positions of locators andclamps, and the clamping force are extracted from realstrings. These parameters are written to a text file. Theinput batch file of ANSYS could read these parameters andcalculate the deformation of machined surfaces. Thus thefitness values in GA procedure can also be written to a textfile for current fixture design scheme.It is costly to compute the fitness value when there are alargenumber of nodes in an FEM model.Thus itis necessaryto speed up the computation for GA procedure. As thegeneration goes by, chromosomes in the population aregetting similar. In this work, calculated fitness values arestored in a SQL Server database with the chromosomes andfitness values. GA procedure first checks if currentchromosomes fitness value has been calculated before, ifnot, fixture design scheme are sent to ANSYS, otherwisefitness values are directly taken from the database.The meshing of workpiece FEA model keeps same inevery calculating time. The difference among everycalculating model is the boundary conditions. Thus, themeshed workpiece FEA model could be used repeatedly bythe “resume” command in ANSYS.5 Case studyAn example of milling fixture design optimization problemfor a low rigidity workpiece displayed in previous researchpapers 16, 18, 22 is presented in the following sections.Fig. 5 Candidate regions for thelocators and clampsTable 3 Bound of design variablesMinimumMaximumX /mmZ /mmX /mmZ /mmL10076.238.1L276.20152.438.1L3038.176.276.2L476.238.1152.476.2C10076.276.2C276.20152.476.2F1/N06673.2F2/N06673.2Int J Adv Manuf Technol5.1 Workpiece geometry and propertiesThe geometry and features of the workpiece are shown inFig. 4. The material of the hollow workpiece is aluminum390 with a Poisson ration of 0.3 and Youngs modulus of71 Gpa. The outline dimensions are 152.4 mm127 mm76.2 mm. The one third top inner wall of the workpiece isundergoing an end-milling process and its cutter path is alsoshown in Fig. 4. The material of the employed fixtureelements is alloy steel with a Poisson ration of 0.3 andYoungs modulus of 220 Gpa.5.2 Simulating and machining operationA peripheral end milling operation is carried out on theexample workpiece. The machining parameters of theoperation are given in Table 2. Based on these parameters,the maximum values of cutting forces that are calculatedand applied as element surface loads on the inner wall ofthe workpiece at the cutter position are 330.94 N(tangential), 398.11 N (radial) and 22.84 N (axial). Theentire tool path is discretized into 26 load steps and cuttingforce directions are determined by the cutter position.5.3 Fixture design planThe fixture plan for holding the workpiece in the machiningoperation is shown in Fig. 5.
收藏