《福建省三明市寧化縣2018年中考數(shù)學(xué)第二輪復(fù)習(xí)練習(xí) 專(zhuān)題11 代數(shù)綜合》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《福建省三明市寧化縣2018年中考數(shù)學(xué)第二輪復(fù)習(xí)練習(xí) 專(zhuān)題11 代數(shù)綜合(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專(zhuān)題十一:代數(shù)綜合(二次函數(shù)綜合)
1.在平面直角坐標(biāo)系 中,二次函數(shù)的圖像如圖所示,下列說(shuō)法正確的是 ( )
A. B.
C. D.
第1題 第2題
2.如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,給出下列結(jié)論:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( ?。?
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
3.已知二次函數(shù)的與的部分對(duì)應(yīng)值如下表:
-1
0
1
3
-3
1
3
1
下列結(jié)論:①拋物線(xiàn)的開(kāi)口向下;
2、②其圖象的對(duì)稱(chēng)軸為;③當(dāng)時(shí),函數(shù)值隨的增大而增大;④方程有一個(gè)根大于4.其中正確的結(jié)論有(?。?
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
4.設(shè)直線(xiàn)x=1是函數(shù)y=ax2+bx+c(a,b,c是實(shí)數(shù),且a<0)的圖象的對(duì)稱(chēng)軸,( ?。?
A.若m>1,則(m﹣1)a+b>0 B.若m>1,則(m﹣1)a+b<0
C.若m<1,則(m﹣1)a+b>0 D.若m<1,則(m﹣1)a+b<0
5.已知二次函數(shù)的圖象如圖所示,則正比例函與反比例函數(shù)在同一坐標(biāo)系中的大致圖象是( )
A. B. C. D.
6.已知拋
3、物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線(xiàn)過(guò)原點(diǎn);②4a+b+c=0;③a﹣b+c<0;④拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.其中結(jié)論正確的是( ?。?
A.①②③ B.③④⑤ C.①②④ D.①④⑤
二、填空題
7.如圖,正比例函數(shù)和一次函數(shù)的圖像相交于點(diǎn).當(dāng)時(shí), .(填“>”或“<”)
第7題 第8題
8.如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線(xiàn)y=(x>0)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè)
4、,點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為 ?。?
9.如圖,點(diǎn)是函數(shù)與的圖象在第一象限內(nèi)的交點(diǎn),,則的值為 .
第9題 第10題
10.如圖,在平面直角坐標(biāo)系中,直線(xiàn)l:y=x﹣與x軸交于點(diǎn)B1,以O(shè)B1為邊長(zhǎng)作等邊三角形A1OB1,過(guò)點(diǎn)A1作A1B2平行于x軸,交直線(xiàn)l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊三角形A2A1B2,過(guò)點(diǎn)A2作A2B3平行于x軸,交直線(xiàn)l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊三角形A3A2B3,…,則點(diǎn)A2017的橫坐標(biāo)是 ?。?
三、解答題
11.已知關(guān)于x。的一元二次方程x2+(k﹣
5、5)x+1﹣k=0(其中k為常數(shù))
(1)求證無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
12.荊州市某水產(chǎn)養(yǎng)殖戶(hù)進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷(xiāo)售旺季的80天里,銷(xiāo)售單價(jià)p(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:
,日銷(xiāo)售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷(xiāo)售量與時(shí)間t的函數(shù)關(guān)系式?
(2)哪一天的日銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該養(yǎng)殖戶(hù)有多少天日銷(xiāo)
6、售利潤(rùn)不低于2400元?
(4)在實(shí)際銷(xiāo)售的前40天中,該養(yǎng)殖戶(hù)決定每銷(xiāo)售1千克小龍蝦,就捐贈(zèng)m(m<7)到引用源。元給村里的特困戶(hù).在這前40天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間錯(cuò)誤!未找到引用源。的增大而增大,求m的取值范圍.
13.如圖,是將拋物線(xiàn)平移后得到的拋物線(xiàn),其對(duì)稱(chēng)軸為,與軸的一個(gè)交點(diǎn)為,另一交點(diǎn)為,與軸交點(diǎn)為.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線(xiàn)上一點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)點(diǎn)是拋物線(xiàn)上一點(diǎn),點(diǎn)是一次函數(shù)的圖象上一點(diǎn),若四邊形為平行四邊形,這樣的點(diǎn)是否存在?若存在,分別求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
14.在平面直角坐標(biāo)系中,設(shè)二
7、次函數(shù)y1=(x+a)(x﹣a﹣1),其中a≠0.
(1)若函數(shù)y1的圖象經(jīng)過(guò)點(diǎn)(1,﹣2),求函數(shù)y1的表達(dá)式;
(2)若一次函數(shù)y2=ax+b的圖象與y1的圖象經(jīng)過(guò)x軸上同一點(diǎn),探究實(shí)數(shù)a,b滿(mǎn)足的關(guān)系式;
(3)已知點(diǎn)P(x0,m)和Q(1,n)在函數(shù)y1的圖象上,若m<n,求x0的取值范圍.
15.如圖,拋物線(xiàn)y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;
(1)求拋物線(xiàn)的解析式(用一般式表示);
(2)點(diǎn)D為y軸右側(cè)拋物線(xiàn)上一點(diǎn),是否存在點(diǎn)D使S△ABC=S△ABD?若存在請(qǐng)直接給出點(diǎn)D坐標(biāo);若不存在請(qǐng)說(shuō)明理由;
(3)將直線(xiàn)BC繞點(diǎn)
8、B順時(shí)針旋轉(zhuǎn)45°,與拋物線(xiàn)交于另一點(diǎn)E,求BE的長(zhǎng).
答案
一、選擇題:
1.B 2.C 3.B 4.C 5.C 6.C.
二、填空題:
7. < 8. 1+. 9. 10.
三、解答題:
11.【答案】(1)證明見(jiàn)解析(2)k<1(3)2
【解析】
試題分析:(1)求出方程的判別式△的值,利用配方法得出△>0,根據(jù)判別式的意義即可證明;
(2)由于二次函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以?huà)佄锞€(xiàn)的頂點(diǎn)在x軸的下方經(jīng)過(guò)一、二、四象限
9、,根據(jù)二次項(xiàng)系數(shù)知道拋物線(xiàn)開(kāi)口向上,由此可以得出關(guān)于k的不等式組,解不等式組即可求解;
(3)設(shè)方程的兩個(gè)根分別是x1,x2,根據(jù)題意得(x1﹣3)(x2﹣3)<0,根據(jù)一元二次方程根與系數(shù)的關(guān)系求得k的取值范圍,再進(jìn)一步求出k的最大整數(shù)值.
試題解析:(1)∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,
∴無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)∵二次函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,
∵二次項(xiàng)系數(shù)a=1,
∴拋物線(xiàn)開(kāi)口方向向上,
∵△=(k﹣3)2+12>0,
∴拋物線(xiàn)與x軸有兩個(gè)交點(diǎn),
設(shè)拋物線(xiàn)與x軸的交點(diǎn)的橫
10、坐標(biāo)分別為x1,x2,
∴x1+x2=5﹣k>0,x1?x2=1﹣k>0,
解得k<1,
即k的取值范圍是k<1;
考點(diǎn):1、拋物線(xiàn)與x軸的交點(diǎn);2、根的判別式;3、根與系數(shù)的關(guān)系;4、二次函數(shù)的性質(zhì)
12.【答案】(1)y=﹣2t+200(1≤x≤80,t為整數(shù))(2)第30天的日銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為2450元(3)21(4)5≤m<7
【解析】
∴y=﹣2t+200(1≤x≤80,t為整數(shù));
(2)設(shè)日銷(xiāo)售利潤(rùn)為w,則w=(p﹣6)y,
①當(dāng)1≤t≤40時(shí),w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
∴當(dāng)t=30時(shí),w最大=2450;
11、
②當(dāng)41≤t≤80時(shí),w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,
∴當(dāng)t=41時(shí),w最大=2301,
∵2450>2301,
∴第30天的日銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為2450元.
考點(diǎn):二次函數(shù)的應(yīng)用
13.【答案】(1)y=﹣x2+2x+3(2)(1,4)(3)P、Q的坐標(biāo)是(0,3),(1,3)或(,)、(,)
【解析】
(2)在y=﹣x2+2x+3中令x=0,則y=3,即C的坐標(biāo)是(0,3),OC=3.
∵B的坐標(biāo)是(3,0),
∴OB=3,
∴OC=OB,則△OBC是等腰直角三角形.
∴∠OCB=45°,
過(guò)點(diǎn)N作NH⊥y軸,垂足是
12、H.
∵∠NCB=90°,
∴∠NCH=45°,
∴NH=CH,
∴HO=OC+CH=3+CH=3+NH,
設(shè)點(diǎn)N縱坐標(biāo)是(a,﹣a2+2a+3).
∴a+3=﹣a2+2a+3,
解得a=0(舍去)或a=1,
∴N的坐標(biāo)是(1,4);
考點(diǎn):二次函數(shù)綜合題
考點(diǎn):1、待定系數(shù)法求一次函數(shù)的解析式,2、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,3、一次函數(shù)的性質(zhì)
14.【答案】(1)函數(shù)y1的表達(dá)式y(tǒng)=x2﹣x﹣2(2)a=b或b=-2a(3)x0的取值范圍x0<0或x0>1
【解析】
(2)當(dāng)y=0時(shí)x2﹣x﹣2=0,解得x1=﹣1,x2=2,
y1的圖象與x軸的交點(diǎn)是(
13、﹣1,0)(2,0),
當(dāng)y2=ax+b經(jīng)過(guò)(﹣1,0)時(shí),﹣a+b=0,即a=b;
當(dāng)y2=ax+b經(jīng)過(guò)(2,0)時(shí),2a+b=0,即b=﹣2a;
(3)當(dāng)P在對(duì)稱(chēng)軸的左側(cè)時(shí),y隨x的增大而增大,
(1,n)與(0,n)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),
由m<n,得x0<0;
當(dāng)時(shí)P在對(duì)稱(chēng)軸的右側(cè)時(shí),y隨x的增大而減小,
由m<n,得x0>1,
綜上所述:m<n,求x0的取值范圍x0<0或x0>1.
考點(diǎn):二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征
15. 【解答】解:
(1)∵拋物線(xiàn)y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),
∴,解得,
∴拋物線(xiàn)解析式為y=﹣x2+x+2;
(2
14、)由題意可知C(0,2),A(﹣1,0),B(4,0),
∴AB=5,OC=2,
∴S△ABC=AB?OC=×5×2=5,
∵S△ABC=S△ABD,
∴S△ABD=×5=,
設(shè)D(x,y),
∴AB?|y|=×5|y|=,解得|y|=3,
當(dāng)y=3時(shí),由﹣x2+x+2=3,解得x=1或x=2,此時(shí)D點(diǎn)坐標(biāo)為(1,3)或(2,3);
當(dāng)y=﹣3時(shí),由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此時(shí)D點(diǎn)坐標(biāo)為(5,﹣3);
綜上可知存在滿(mǎn)足條件的點(diǎn)D,其坐標(biāo)為(1,3)或(2,3)或(5,﹣3);
(3)∵AO=1,OC=2,OB=4,AB=5,
∴AC==,BC=
15、=2,
∴AC2+BC2=AB2,
∴△ABC為直角三角形,即BC⊥AC,
如圖,設(shè)直線(xiàn)AC與直線(xiàn)BE交于點(diǎn)F,過(guò)F作FM⊥x軸于點(diǎn)M,
由題意可知∠FBC=45°,
∴∠CFB=45°,
∴CF=BC=2,
∴=,即=,解得OM=2,=,即=,解得FM=6,
∴F(2,6),且B(4,0),
設(shè)直線(xiàn)BE解析式為y=kx+m,則可得,解得,
∴直線(xiàn)BE解析式為y=﹣3x+12,
聯(lián)立直線(xiàn)BE和拋物線(xiàn)解析式可得,解得或,
∴E(5,﹣3),
∴BE==.
本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形面積、勾股定理及其逆定理、平行線(xiàn)分線(xiàn)段成比例、函數(shù)圖象的交點(diǎn)、等腰直角三角形的性質(zhì)、方程思想及分類(lèi)討論思想等知識(shí).在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中求得D點(diǎn)的縱坐標(biāo)是解題的關(guān)鍵,在(3)中由條件求得直線(xiàn)BE的解析式是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),特別是最后一問(wèn),有一定的難度.