《新人教B版 數(shù)學(xué) 必修五 教案: 不等式的實(shí)際應(yīng)用》由會(huì)員分享,可在線閱讀,更多相關(guān)《新人教B版 數(shù)學(xué) 必修五 教案: 不等式的實(shí)際應(yīng)用(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、3.4 不等式的實(shí)際應(yīng)用 教案
一、教材分析:
前面學(xué)生已經(jīng)學(xué)習(xí)了一元二次不等式的解法,本節(jié)主要是一元二次不等式的實(shí)際應(yīng)用。通過本節(jié)課的實(shí)例教學(xué),讓學(xué)生體驗(yàn)不等式在解決實(shí)際問題的作用,數(shù)學(xué)與日常及其他學(xué)科的聯(lián)系。并通過解題過程,抽象出不等式模型,總結(jié)出解應(yīng)用題的思路與步驟。
本節(jié)課的內(nèi)容對(duì)于解決線性規(guī)劃問題提供了很好的解題思路。同時(shí),應(yīng)用題中不等式模型也是高考經(jīng)常經(jīng)常涉及的問題,其地位也就不言而喻了。
二、三維目標(biāo):
1、通過實(shí)際問題的情景,讓學(xué)生掌握不等式的實(shí)際應(yīng)用,掌握解決這類問題的一般步驟,
2、讓學(xué)生經(jīng)歷從實(shí)際情景中抽象出不等式模型的過程。
3、通過實(shí)例,
2、讓學(xué)生體驗(yàn)數(shù)學(xué)與日常生活的聯(lián)系,感受數(shù)學(xué)的實(shí)用價(jià)值,增強(qiáng)學(xué)生的應(yīng)用意識(shí),提高他們的實(shí)踐能力。
三、教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):不等式的實(shí)際應(yīng)用
難點(diǎn):數(shù)學(xué)建模
四、教學(xué)方法:通過啟發(fā)、引導(dǎo)、歸納、總結(jié)與探究相結(jié)合的方法,組織教學(xué)活動(dòng),按照由特殊到一般的認(rèn)知規(guī)律,引導(dǎo)學(xué)生分析歸納如何抽象不等式模型及解不等式應(yīng)用題的一般步驟。
五、教具:多媒體
六、教學(xué)過程:
〔一〕溫故知新:
1、比擬兩實(shí)數(shù)大小的常用方法
2、聯(lián)系一元二次不等式與相應(yīng)的方程以及函數(shù)之間的關(guān)系,填寫下表
△=b2-4ac
△>0
△=0
△
3、<0
Y=ax2+bx+c
(a>0)的圖象
ax2+bx+c=0
〔a>0〕的根
ax2+bx+>0
〔a>0〕的解集
ax2+bx+c<0
〔a>0〕的解集
〔二〕情景引入
b克糖水中含有a克糖〔b>a>0〕,假設(shè)在這些糖水中再添加m〔m>0〕克糖,那么糖水就變甜了,根據(jù)此事實(shí)提煉一個(gè)關(guān)系式 ,師:引例就是不等式在我們的生活中的實(shí)際應(yīng)用,今天,我們一起來學(xué)習(xí)不等式的實(shí)際應(yīng)用?!惨稣n題〕
4、
〔三〕、典例分析:
例1、 甲、乙兩人同時(shí)同地沿同一路線去同一地點(diǎn),甲有一半的時(shí)間以速度m行走,另一半時(shí)間以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走,如果m≠n,問甲、乙兩人誰先到達(dá)指定地點(diǎn)?
分析:設(shè)總路程為s,甲、乙所用時(shí)間分別為t甲、t乙, 假設(shè)要解決此問題,只需比擬t甲,t乙的大小即可
解:設(shè)總路程為s,甲、乙所用時(shí)間分別為t甲、t乙,由題意得
,
所以 t甲= , t乙=
所以t甲- t乙=-==
其中s,m,n都是正數(shù),且m≠n,于是t甲- t乙<0 ,即t甲<t乙
答:甲比乙先到達(dá)指定地點(diǎn)。
方法二:做商比
5、擬。
回歸情景:對(duì)糖水問題你能給出證明嗎?
例2、有純農(nóng)藥一桶,倒出8升后用水補(bǔ)滿,然后倒出4升再用水補(bǔ)滿,此時(shí)桶中的農(nóng)藥不超過容積的28%.問桶的容積最大為多少?
分析:假設(shè)桶的容積為x, 倒前純農(nóng)藥為x升
第一次 :倒出純農(nóng)藥8升,純農(nóng)藥還剩〔x-8〕升,桶內(nèi)溶液濃度
第二次 :倒出溶液4升,純農(nóng)藥還剩[〔x-8〕—〔〕4],
中此題的不等關(guān)系是:桶中的農(nóng)藥不超過容積的28%
解答:有學(xué)生完成。
2、由例1、例2歸納出解不等式應(yīng)用題的一般步驟:
練習(xí):
1、某出版社,如果以每本2.50元的價(jià)格發(fā)行一種圖書,可發(fā)行80 0
6、00本。如果一本書的定價(jià)每升高0.1元,發(fā)行量就減少2000本,那么要使收入不低于200 000元,這種書的最高定價(jià)應(yīng)當(dāng)是多少?
2、某工人共加工300個(gè)零件。在加工100個(gè)零件后,改良了操作方法,每天多加工15個(gè),用了不到20天的時(shí)間就完成了任務(wù)。問改良操作方法前,每天至少要加工多少個(gè)零件?
〔四〕、小結(jié):
知識(shí):
方法:
〔五〕、作業(yè):課本P83 A 2 B 2
參考答案:
練習(xí):
1.解:設(shè)這種書的最高定價(jià)應(yīng)當(dāng)為x元?
由題意得:[80000-(x-2.5)×20000] ×x≥200000,
解得:,所以最高定價(jià)為4元。
2.解:設(shè)每天至少要加工x零件?
由題意得:
解得:或,
設(shè)每天至少要加工9個(gè)零件。