秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2017-2018學(xué)年高中數(shù)學(xué) 第二講 證明不等式的基本方法 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用教學(xué)案 新人教A版選修4-5

上傳人:彩*** 文檔編號(hào):104437092 上傳時(shí)間:2022-06-10 格式:DOC 頁數(shù):11 大?。?.88MB
收藏 版權(quán)申訴 舉報(bào) 下載
2017-2018學(xué)年高中數(shù)學(xué) 第二講 證明不等式的基本方法 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用教學(xué)案 新人教A版選修4-5_第1頁
第1頁 / 共11頁
2017-2018學(xué)年高中數(shù)學(xué) 第二講 證明不等式的基本方法 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用教學(xué)案 新人教A版選修4-5_第2頁
第2頁 / 共11頁
2017-2018學(xué)年高中數(shù)學(xué) 第二講 證明不等式的基本方法 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用教學(xué)案 新人教A版選修4-5_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2017-2018學(xué)年高中數(shù)學(xué) 第二講 證明不等式的基本方法 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用教學(xué)案 新人教A版選修4-5》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018學(xué)年高中數(shù)學(xué) 第二講 證明不等式的基本方法 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用教學(xué)案 新人教A版選修4-5(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第3節(jié) 反證法與放縮法創(chuàng)新應(yīng)用 [核心必知] 1.反證法 先假設(shè)要證的命題不成立,以此為出發(fā)點(diǎn),結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進(jìn)行正確的推理,得到和命題的條件(或已證明的定理、性質(zhì)、明顯成立的事實(shí)等)矛盾的結(jié)論,以說明假設(shè)不正確,從而證明原命題成立,我們稱這種證明問題的方法為反證法. 2.放縮法 證明不等式時(shí),通常把不等式中的某些部分的值放大或縮小,簡化不等式,從而達(dá)到證明的目的.我們把這種方法稱為放縮法. [問題思考] 1.用反證法證明不等式應(yīng)注意哪些問題? 提示:用反證法證明不等式要把握三點(diǎn): (1)必須先否定結(jié)論,對(duì)于結(jié)論的反面出現(xiàn)的多種可能要

2、逐一論證,缺少任何一種可能,證明都是不完全的. (2)反證法必須從否定結(jié)論進(jìn)行推理,且必須根據(jù)這一條件進(jìn)行論證;否則,僅否定結(jié)論,不從結(jié)論的反面出發(fā)進(jìn)行論證,就不是反證法. (3)推導(dǎo)出來的矛盾可以是多種多樣的,有的與已知條件相矛盾,有的與假設(shè)相矛盾,有的與定理、公理相違背,有的與已知的事實(shí)相矛盾等,但推導(dǎo)出的矛盾必須是明顯的. 2.運(yùn)用放縮法證明不等式的關(guān)鍵是什么? 提示:運(yùn)用放縮法證明不等式的關(guān)鍵是放大(或縮小)要適當(dāng).如果所要證明的不等式中含有分式,那么我們把分母放大時(shí)相應(yīng)分式的值就會(huì)縮小; 反之,如果把分母縮小,則相應(yīng)分式的值就會(huì)放大.有時(shí)也會(huì)把分子、分母同時(shí)放大,這時(shí)應(yīng)該注

3、意不等式的變化情況,可以與相應(yīng)的函數(shù)相聯(lián)系,以達(dá)到判斷大小的目的,這些都是我們?cè)谧C明中的常用方法與技巧,也是放縮法中的主要形式.    設(shè)a,b,c,d都是小于1的正數(shù),求證:4a(1-b),4b(1-c),4c(1-d),4d(1-a)這四個(gè)數(shù)不可能都大于1. [精講詳析] 本題考查反證法的應(yīng)用.解答本題若采用直接法證明將非常困難,因此可考慮采用反證法從反面入手解決. 假設(shè)4a(1-b)>1,4b(1-c)>1,4c(1-d)>1,4d(1-a)>1,則有a(1-b)>,b(1-c)>,c(1-d)>,d(1-a)>. ∴>,>,>,>. 又∵≤,≤, ≤, ≤

4、,∴>,>, >,>.將上面各式相加得2>2,矛盾. ∴4a(1-b),4b(1-c),4c(1-d),4d(1-a) 這四個(gè)數(shù)不可能都大于1. (1)當(dāng)證明的結(jié)論中含有“不是”,“不都”,“不存在”等詞語時(shí),適于應(yīng)用反證法,因?yàn)榇祟悊栴}的反面比較具體. (2)用反證法證明不等式時(shí),推出的矛盾有三種表現(xiàn)形式:①與已知相矛盾,②與假設(shè)矛盾,③與顯然成立的事實(shí)相矛盾. 1.已知f(x)是R上的單調(diào)遞增函數(shù),且f(a)+f(-b)>f(-a)+f(b).求證:a>b. 證明:假設(shè)a≤b, 則當(dāng)a=b時(shí)-b=-a, 于是有f(a)+f(-b)=f(b)+f(-a)與已知矛盾.

5、 當(dāng)a<b時(shí),-a>-b, 于是有f(a)b.    實(shí)數(shù)a、b、c、d滿足a+b=c+d=1,ac+bd>1,求證:a、b、c、d中至少有一個(gè)是負(fù)數(shù). [精講詳析] 本題考查“至多”、“至少”型命題的證明方法.解答本題應(yīng)假設(shè)a、b、c、d都是非負(fù)數(shù),然后證明并得出矛盾. 假設(shè)a、b、c、d都是非負(fù)數(shù), 即a≥0,b≥0,c≥0,d≥0, 則1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd, 這與已知中ac+bd>1矛盾, ∴原假設(shè)錯(cuò)誤, ∴a、b、c、

6、d中至少有一個(gè)是負(fù)數(shù). (1)在證明中含有“至少”、“至多”、“最多”等字眼時(shí),或證明否定性命題、唯一性命題時(shí),可使用反證法證明.在證明中常見的矛盾可以與題設(shè)矛盾,也可以與已知矛盾,與顯然的事實(shí)矛盾,也可以自相矛盾. (2)在用反證法證明的過程中,由于作出了與結(jié)論相反的假設(shè),相當(dāng)于增加了題設(shè)條件,在證明過程中必須使用這個(gè)增加的條件,否則就不是反證法. 2.已知函數(shù)y=f(x)在區(qū)間(a,b)上是增函數(shù),求證:y=f(x)在區(qū)間(a,b)上至多有一個(gè)零點(diǎn). 證明:假設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上至少有兩個(gè)零點(diǎn), 不妨設(shè)x1,x2(x1≠x2)為函數(shù)y=f(x)在區(qū)間(a,

7、b)上的兩個(gè)零點(diǎn),且x1<x2,則f(x1)=f(x2)=0. ∵函數(shù)y=f(x)在區(qū)間(a,b)上為增函數(shù), x1,x2∈(a,b)且x1<x2, ∴f(x1)<f(x2),與f(x1)=f(x2)=0矛盾, ∴原假設(shè)不成立. ∴函數(shù)y=f(x)在(a,b)上至多有一個(gè)零點(diǎn).    求證:-<1++…+<2-(n∈N+且n≥2). [精講詳析] 本題考查放縮法在證明不等式中的應(yīng)用,解答本題要注意欲證的式子中間是一個(gè)和的形式,但我們不能利用求和公式或其他方法求和,因此可考慮將分母適當(dāng)放大或縮小成可以求和的形式,進(jìn)而求和,并證明該不等式. ∵k(k+1)>k2>k(k-1),

8、 ∴<<, 即-<<- (k∈N+且k≥2). 分別令k=2,3,…,n 得-<<1-,-<<-,…-<<-, 將這些不等式相加得 -+-+…+-<++…+<1-+-+…+-, 即-<++…+<1-, ∴1+-<1+++…+<1+1-, 即-<1+++…+<2- (n∈N+且n≥2)成立. (1)放縮法證不等式主要是根據(jù)不等式的傳遞性進(jìn)行變換,即欲證a>b,可換成證a>c且c>b,欲證a

9、利用不等式的性質(zhì)、利用已知不等式、利用函數(shù)的性質(zhì)進(jìn)行放縮等.比如:舍去或加上一些項(xiàng):+>; 將分子或分母放大(縮小):<,>,<,>(k∈R,k>1)等. 3.已知:an=+++…+(n∈N+),求證:<an<. 證明:∵=, ∴>n, ∴an=++…+>1+2+3+…40+n=. ∵<, ∴an<+++…+ =+(2+3+…+n)+=. 綜上得:<an<. 反證法和放縮法在高考中單獨(dú)命題的可能性不大,一般以解答題一問的形式出現(xiàn),但反證法和放縮法是一種重要的思維模式,在邏輯推理中有著廣泛的應(yīng)用. [考題印證] (安徽高考)設(shè)直線l1:y=k1x+1,l2:y

10、=k2x-1, 其中實(shí)數(shù)k1,k2滿足k1k2+2=0. (1)證明l1與l2相交; (2)證明l1與l2的交點(diǎn)在橢圓2x2+y2=1上. [命題立意] 本題考查直線與直線的位置關(guān)系,線線相交的判斷與證明,點(diǎn)在曲線上的判斷與證明,考查學(xué)生推理論證的能力. [證明] (1)反證法.假設(shè)l1與l2不相交,則l1與l2平行,有k1=k2.代入k1k2+2=0,得k+2=0, 此與k1為實(shí)數(shù)的事實(shí)相矛盾.從而k1≠k2,即l1與l2相交. (2)法一 :由方程組 解得交點(diǎn)P的坐標(biāo)(x,y)為 而2x2+y2=2+ ===1. 此即表明交點(diǎn)P(x,y)在橢圓2x2+y2=1上. 法

11、二:l1與l2的交點(diǎn)P的坐標(biāo)(x,y)滿足 故知x≠0,從而 代入k1k2+2=0,得·+2=0, 整理后,得2x2+y2=1, 所以交點(diǎn)P在橢圓2x2+y2=1上. 一、選擇題 1.否定“自然數(shù)a、b、c中恰有一個(gè)為偶數(shù)”時(shí)正確的反設(shè)為  (  ) A.a(chǎn)、b、c都是奇數(shù) B.a(chǎn)、b、c都是偶數(shù) C.a(chǎn)、b、c中至少有兩個(gè)偶數(shù) D.a(chǎn)、b、c中至少有兩個(gè)偶數(shù)或都是奇數(shù) 解析:選D 三個(gè)自然數(shù)的奇偶情況有“三偶、三奇、二偶一奇、二奇一偶”4種,而自然數(shù)a、b、c中恰有一個(gè)為偶數(shù)包含“二奇一偶”的情況,故反面的情況有3種,只有D項(xiàng)符合. 2.設(shè)x>0,y>0,

12、A=,B=+,則A、B的大小關(guān)系為(  )         A.A=B B.A<B C.A≤B D.A>B 解析:選B B=+>+==A,即A

13、+(c-a)2≠0; ②a>b與ab與a

14、1. 答案:M<1 6.用反證法證明“已知平面上有n(n≥3)個(gè)點(diǎn),其中任意兩點(diǎn)的距離最大為d,距離為d的兩點(diǎn)間的線段稱為這組點(diǎn)的直徑,求證直徑的數(shù)目最多為n條”時(shí),假設(shè)的內(nèi)容為________. 解析:對(duì)“最多”的否定應(yīng)當(dāng)是“最少”,二者之間應(yīng)該是完全對(duì)應(yīng)的,所以本題中的假設(shè)應(yīng)為“直徑的數(shù)目最少為n+1條”. 答案:直徑的數(shù)目最少為n+1條 7.A=1+++…+與(n∈N+)的大小關(guān)系是________. 解析:A=+++…+≥++…+n項(xiàng) ==. 答案:A≥ 8.已知a>2,則loga(a-1)loga(a+1)________1(填“>”、“<”或“=”). 解析:∵a

15、>2,∴l(xiāng)oga(a-1)>0,loga(a+1)>0, 又loga(a-1)≠loga(a+1), ∴<, 而=loga(a2-1) <logaa2=1, ∴l(xiāng)oga(a-1)loga(a+1)<1. 答案:< 三、解答題 9.已知01且y(2-z)>1且z(2-x)>1均成立, 則三式相乘有:xyz(2-x)(2-y)(2-z)>1.① 由于0

16、且0<z(2-z)≤1, ∴三式相乘得:0(x+y+z). 證明: = ≥ =|x+|≥x+. 同理可得:≥y+, ≥z+. 由于x、y、z不全為零,故上述三式中至少有一式取不到等號(hào),所以三式累加得: ++>++=(x+y+z). 11.已知數(shù)列{an}滿足a1=2,an+1=22·an(n∈N+), (1)求a2,a3并求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)cn=,求證:c1+c2+c3+…+cn<. 解:(1)∵a1=2,an+1=2·an(n∈N+), ∴a2=2·a1=16, a3=2·a2=72. 又∵=2·,n∈N+,∴為等比數(shù)列. ∴=·2n-1=2n, ∴an=n2·2n. (2)證明:cn==, ∴c1+c2+c3+…+cn =+++…+<+++· =+·<+·=+ ==<=,所以結(jié)論成立. 11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!