《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)北師大版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 計數(shù)原理、概率、隨機(jī)變量及其分布 第4節(jié) 離散型隨機(jī)變量及其分布列教學(xué)案 理(含解析)北師大版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第四節(jié) 離散型隨機(jī)變量及其分布列
[考綱傳真] 1.理解取有限個值的離散型隨機(jī)變量及其分布列的概念,了解分布列對于刻畫隨機(jī)現(xiàn)象的重要性.2.理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡單的應(yīng)用.
1.離散型隨機(jī)變量的分布列
(1)將隨機(jī)現(xiàn)象中試驗(yàn)(或觀測)的每一個可能的結(jié)果都對應(yīng)于一個數(shù),這種對應(yīng)稱為一個隨機(jī)變量.
(2)離散型隨機(jī)變量:隨機(jī)變量的取值能夠一一列舉出來,這樣的隨機(jī)變量稱為離散型隨機(jī)變量.
(3)設(shè)離散型隨機(jī)變量X的取值為a1,a2,…隨機(jī)變量X取ai的概率為pi(i=1,2,…),記作:P(X=ai)=pi(i=1,2,…),
或把上式列表:
X=ai
a1
a
2、2
…
P(X=ai)
p1
p2
…
稱為離散型隨機(jī)變量X的分布列.
(4)性質(zhì):
①pi>0,i=1,2,…;
②p1+p2+…=1.
2.超幾何分布
一般地,設(shè)有N件產(chǎn)品,其中有M(M≤N)件次品.從中任取n(n≤N)件產(chǎn)品,用X表示取出的n件產(chǎn)品中次品的件數(shù),那么
P(X=k)=(其中k為非負(fù)整數(shù)).
如果一個隨機(jī)變量的分布列由上式確定,則稱X服從參數(shù)為N,M,n的超幾何分布.
[基礎(chǔ)自測]
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”)
(1)離散型隨機(jī)變量的分布列中,各個概率之和可以小于1. ( )
(2)離散型隨機(jī)變量的
3、各個可能值表示的事件是彼此互斥的. ( )
(3)如果隨機(jī)變量X的分布列由下表給出,則它服從兩點(diǎn)分布. ( )
X
2
5
P
0.3
0.7
(4)從4名男演員和3名女演員中選出4人,其中女演員的人數(shù)X服從超幾何分布.( )
[答案] (1)× (2)√ (3)× (4)√
2.投擲甲、乙兩顆骰子,所得點(diǎn)數(shù)之和為X,那么X=4表示的事件是( )
A.一顆是3點(diǎn),一顆是1點(diǎn)
B.兩顆都是2點(diǎn)
C.甲是3點(diǎn),乙是1點(diǎn)或甲是1點(diǎn),乙是3點(diǎn)或兩顆都是2點(diǎn)
D.以上答案都不對
C [甲是3點(diǎn),乙是1點(diǎn)與甲是1點(diǎn),乙是3點(diǎn)是試驗(yàn)的兩個不同結(jié)果,故選C.]
3.設(shè)隨
4、機(jī)變量X的分布列如下:
X
1
2
3
4
5
P
p
則p為( )
A. B.
C. D.
C [由分布列的性質(zhì)知,++++p=1,∴p=1-=.]
4.設(shè)隨機(jī)變量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=________.
10 [由于隨機(jī)變量X等可能取1,2,3,…,n,
∴取到每個數(shù)的概率均為,
∴P(X<4)=P(X=1)+P(X=2)+P(X=3)==0.3,∴n=10.]
5.在含有3件次品的10件產(chǎn)品中任取4件,則取到次品數(shù)X的分布列為________.
P(X=k)=,k=0,
5、1,2,3 [由題意知,X服從超幾何分布,其中N=10,M=3,n=4,所以分布列為P(X=k)=,k=0,1,2,3.]
離散型隨機(jī)變量的分布列的性質(zhì)
1.隨機(jī)變量X的分布列如下:
X
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,則P(|X|=1)=________.
[由題意知
所以2b+b=1,則b=,因此a+c=.
所以P(|X|=1)=P(X=-1)+P(X=1)=a+c=.]
2.設(shè)隨機(jī)變量X的分布列為P=ak(k=1,2,3,4,5).
(1)求a;
(2)求P;
(3)求P.
[解] (1)由分布列的性質(zhì),得P+P+P
6、+P+P(X=1)=a+2a+3a+4a+5a=1,
所以a=.
(2)P=P+P+P(X=1)=3×+4×+5×=.
(3)P=P+P+P=++==.
[規(guī)律方法] (1)利用分布列中各概率之和為1可求參數(shù)的值,此時要注意檢驗(yàn),以保證每個概率值均為非負(fù)數(shù).
(2)求隨機(jī)變量在某個范圍內(nèi)的概率時,根據(jù)分布列,將所求范圍內(nèi)各隨機(jī)變量對應(yīng)的概率相加即可,其依據(jù)是互斥事件的概率加法公式.
求離散型隨機(jī)變量的分布列
【例1】 已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或檢測出3件正品時檢測結(jié)束.
(1)求第一次檢
7、測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費(fèi)用(單位:元),求X的分布列.
[解] (1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件A,P(A)==.
(2)X的可能取值為200,300,400.
P(X=200)==,
P(X=300)==,
P(X=400)=1-P(X=200)-P(X=300)
=1--==.
故X的分布列為
X
200
300
400
P
[規(guī)律方法] 求離散型隨機(jī)變量分布列的步驟
(1)找出隨機(jī)變量X的所有可能取
8、值xi(i=1,2,3,…,n);
(2)求出各取值的概率P(X=xi)=pi;
(3)列成表格并用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確.
提醒:求離散型隨機(jī)變量的分布列的關(guān)鍵是求隨機(jī)變量所有取值對應(yīng)的概率,在求解時,要注意應(yīng)用計數(shù)原理、古典概型等知識.
一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中,含有編號為3的卡片的概率;
(2)在取出的4張卡片中,紅色卡片編號的最大值設(shè)為X,求隨機(jī)變量X的分布列.
[解] (1)由
9、題意知,在7張卡片中,編號為3的卡片有2張,故所求概率為P=1-=1-=.
(2)由題意知,X的可能取值為1,2,3,4,且
P(X=1)==,P(X=2)==,
P(X=3)==,P(X=4)==.
所以隨機(jī)變量X的分布列是
X
1
2
3
4
P
超幾何分布
【例2】 PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).
從某自然
10、保護(hù)區(qū)2017年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表所示 :
PM2.5日均
值(微克/
立方米)
[25,
35)
[35,
45)
[45,
55)
[55,
65)
[65,
75)
[75,
85]
頻數(shù)
3
1
1
1
1
3
(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出3天,求恰有一天空氣質(zhì)量達(dá)到一級的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列.
[解] (1)記“從10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出3天,恰有一天
11、空氣質(zhì)量達(dá)到一級”為事件A,則P(A)==.
(2)依據(jù)條件知,ξ服從超幾何分布,其中N=10,M=3,n=3,且隨機(jī)變量ξ的可能取值為0,1,2,3.
P(ξ=k)=(k=0,1,2,3).
∴P(ξ=0)==,
P(ξ=1)==,
P(ξ=2)==,
P(ξ=3)==.
故ξ的分布列為
ξ
0
1
2
3
P
[規(guī)律方法] 求超幾何分布的分布列的步驟
某外語學(xué)校的一個社團(tuán)中有7名同學(xué),其中2人只會法語,2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學(xué)校交流訪問.求:
(1)在選派的3人中恰有2人會法語的概率;
(2)在選派的3人中既會法語又會英語的人數(shù)X的分布列.
[解] (1)設(shè)事件A:選派的3人中恰有2人會法語,則P(A)==.
(2)依題意知,X服從超幾何分布,X的可能取值為0,1,2,3,
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
∴X的分布列為
X
0
1
2
3
P
- 7 -