《2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 壓軸題目突破練 解析幾何教案 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 壓軸題目突破練 解析幾何教案 理 新人教A版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)大一輪復(fù)習(xí) 壓軸題目突破練 解析幾何教案 理 新人教A版
一、選擇題(每小題5分,共20分)
1. 已知兩條直線l1:y=x,l2:ax-y=0,其中a為實數(shù),當(dāng)這兩條直線的夾角在內(nèi)變動時,a的取值范圍是 ( )
A.(0,1) B.
C.∪(1,) D.(1,)
答案 C
解析 直線l1的傾斜角為,依題意l2的傾斜角的取值范圍為∪,即∪,從而l2的斜率a的取值范圍為∪(1,).
2. 若圓(x-3)2+(y+5)2=r2上有且只有兩個點到直線4x-3y-2=0的距離等于1,則半徑r的取值范圍是
2、 ( )
A.(4,6) B.[4,6) C.(4,6] D.[4,6]
答案 A
解析 因為圓心(3,-5)到直線4x-3y-2=0的距離為=5,
所以當(dāng)半徑r=4時,圓上有1個點到直線4x-3y-2=0的距離等于1,當(dāng)半徑r=6時,圓上有3個點到直線4x-3y-2=0的距離等于1,
所以圓上有且只有兩個點到直線4x-3y-2=0的距離等于1時,40,b>0)與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=5,則雙曲線的漸近線方程為 ( )
A.y=±x
3、 B.y=±x
C.y=±x D.y=±x
答案 A
解析 設(shè)點P(x0,y0).依題意得,焦點F(2,0),
于是有x0=3,y=24;
由此解得a2=1,b2=3,
因此該雙曲線的漸近線方程是y=±x=±x.
4. 已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與點P到該拋物線準(zhǔn)線的距離之和的最小值為 ( )
A. B.3 C. D.
答案 A
解析 記拋物線y2=2x的焦點為F,準(zhǔn)線是l,由拋物線的定義知點P到焦點F的距離等于它到準(zhǔn)線l的距離,因此要求點P到點(0,2)的距離
4、與點P到拋物線的準(zhǔn)線的距離之和的最小值,可以轉(zhuǎn)化為求點P到點(0,2)的距離與點P到焦點F的距離之和的最小值,結(jié)合圖形不難得知相應(yīng)的最小值就等于焦點F到點(0,2)的距離.
因此所求的最小值等于=,選A.
二、填空題(每小題5分,共15分)
5. 如果+=-1表示焦點在y軸上的雙曲線,那么它的半焦距c的取值范圍是________.
答案 (1,+∞)
解析 將原方程化成標(biāo)準(zhǔn)方程為-=1.
由題意知k-1>0且k-2>0,解得k>2.
又a2=k-1,b2=k-2,所以c2=a2+b2=2k-3>1,
所以c>1,故半焦距c的取值范圍是(1,+∞).
6. 若點(3,1)是拋物
5、線y2=2px一條弦的中點,且這條弦所在直線的斜率為2,則p=______.
答案 2
解析 設(shè)弦兩端點為P1(x1,y1),P2(x2,y2),
則,兩式相減得,==2.
又∵y1+y2=2,∴p=2.
7. 已知拋物線x2=4y的焦點為F,經(jīng)過F的直線與拋物線相交于A,B兩點,則以AB為直徑的圓在x軸上所截得的弦長的最小值是________.
答案 2
解析 由拋物線定義得以AB為直徑的圓與拋物線的準(zhǔn)線相切,利用直角三角形中勾股定理得到弦長的解析式,再求弦長的最小值.設(shè)以AB為直徑的圓的半徑為r,則|AB|=2r≥4,r≥2,且圓心到x軸的距離是r-1,所以在x軸上所截得的弦
6、長為2=2≥2,即弦長的最小值是2.
三、解答題(共22分)
8. (10分)已知橢圓C的中心為坐標(biāo)原點O,一個長軸頂點為(0,2),它的兩個短軸頂點和焦點所組成的四邊形為正方形,直線l與y軸交于點P(0,m),與橢圓C交于異于橢圓頂點的兩點A,B,且=2.
(1)求橢圓的方程;
(2)求m的取值范圍.
解 (1)由題意,知橢圓的焦點在y軸上,
設(shè)橢圓方程為+=1(a>b>0),
由題意,知a=2,b=c,又a2=b2+c2,則b=,
所以橢圓方程為+=1.
(2)設(shè)A(x1,y1),B(x2,y2),由題意,知直線l的斜率存在,
設(shè)其方程為y=kx+m,與橢圓方程聯(lián)立,
7、
即消去y,得
(2+k2)x2+2mkx+m2-4=0,
Δ=(2mk)2-4(2+k2)(m2-4)>0,
由根與系數(shù)的關(guān)系,知
又=2,即有(-x1,m-y1)=2(x2,y2-m),
所以-x1=2x2.
則
所以=-22.
整理,得(9m2-4)k2=8-2m2,
又9m2-4=0時等式不成立,
所以k2=>0,得0.
所以m的取值范圍為∪.
9. (12分)已知中心在原點的橢圓C:+=1的一個焦點為F1(0,3),M(x,4)(x>0)為橢圓C上一點,△MOF1的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得
8、直線l與橢圓C相交于A,B兩點,且以線段AB為直徑的圓恰好經(jīng)過原點?若存在,求出直線l的方程;若不存在,說明理由.
解 (1)因為橢圓C的一個焦點為F1(0,3),
所以c=3,b2=a2+9,則橢圓C的方程為+=1,
因為x>0,所以S△OMF1=×3×x=,解得x=1.
故點M的坐標(biāo)為(1,4).
因為點M(1,4)在橢圓上,所以+=1,
得a4-8a2-9=0,
解得a2=9或a2=-1(不合題意,舍去),
則b2=9+9=18,所以橢圓C的方程為+=1.
(2)假設(shè)存在符合題意的直線l與橢圓C相交于A(x1,y1),B(x2,y2)兩點,其方程為y=4x+m(因為直線
9、OM的斜率k=4),
由消去y化簡,得18x2+8mx+m2-18=0.
進而得到x1+x2=-,x1·x2=.
因為直線l與橢圓C相交于A,B兩點,
所以Δ=(8m)2-4×18×(m2-18)>0,
化簡得m2<162,解得-9
10、y=4x+或y=4x-.
B組 專項能力提升
(時間:25分鐘,滿分:43分)
一、選擇題(每小題5分,共15分)
1. 已知橢圓E的左、右焦點分別為F1、F2,過F1且斜率為2的直線交橢圓E于P、Q兩點,若△PF1F2為直角三角形,則橢圓E的離心率為 ( )
A. B. C. D.
答案 A
解析 由題意可知,∠F1PF2是直角,且tan∠PF1F2=2,∴=2,又|PF1|+|PF2|=2a,∴|PF1|=,|PF2|=.
根據(jù)勾股定理得2+2=(2c)2,
所以離心率e==.
2. 由直線y=x+1上的一點向圓(x-3)2+
11、y2=1引切線,則切線長的最小值為 ( )
A.1 B.2 C. D.3
答案 C
解析 如圖所示,
設(shè)直線上一點P,
切點為Q,圓心為M,則|PQ|即為切線長,
MQ為圓M的半徑,長度為1,
|PQ|=
=,
要使|PQ|最小,即求|PM|的最小值,
此題轉(zhuǎn)化為求直線y=x+1上的點到圓心M的最小距離,
設(shè)圓心到直線y=x+1的距離為d,
則d==2.所以|PM|的最小值為2.
所以|PQ|=≥=.
3. (xx·四川)在拋物線y=x2+ax-5(a≠0)上取橫坐標(biāo)為x1=-4,x2=2的兩點,過這兩點引一條割線,有平行于該割線的一條
12、直線同時與拋物線和圓5x2+5y2=36相切,則拋物線頂點的坐標(biāo)為 ( )
A.(-2,-9) B.(0,-5)
C.(2,-9) D.(1,-6)
答案 A
解析 當(dāng)x1=-4時,y1=11-4a;當(dāng)x2=2時,y2=2a-1,所以割線的斜率k==a-2.設(shè)直線與拋物線的切點橫坐標(biāo)為x0,由y′=2x+a得切線斜率為2x0+a,∴2x0+a=a-2,∴x0=-1.
∴直線與拋物線的切點坐標(biāo)為(-1,-a-4),切線方程為y+a+4=(a-2)(x+1),即(a-2)x-y-6=0.
圓5x2+5y2=36的圓心到切線的距離
13、d=.由題意得=,即(a-2)2+1=5.又a≠0,
∴a=4,此時,y=x2+4x-5=(x+2)2-9,
頂點坐標(biāo)為(-2,-9).
二、填空題(每小題5分,共15分)
4. 過橢圓+=1(a>b>0)的左頂點A且斜率為1的直線與橢圓的另一個交點為M,與y軸的交點為B,若|AM|=|MB|,則該橢圓的離心率為________.
答案
解析 由題意知A點的坐標(biāo)為(-a,0),
設(shè)直線的方程為y=x+a,
∴B點的坐標(biāo)為(0,a),故M點的坐標(biāo)為,
代入橢圓方程得a2=3b2,∴2a2=3c2,∴e=.
5. 已知曲線-=1與直線x+y-1=0相交于P、Q兩點,且·=0(
14、O為原點),則-的值為________.
答案 2
解析 將y=1-x代入-=1,
得(b-a)x2+2ax-(a+ab)=0.由題意,知a≠b.
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=,x1x2=.
·=x1x2+y1y2=x1x2+(1-x1)(1-x2)
=2x1x2-(x1+x2)+1.
所以-+1=0,
即2a+2ab-2a+a-b=0,即b-a=2ab,所以-=2.
6. 設(shè)拋物線y2=2x的焦點為F,過F的直線交該拋物線于A,B兩點,則|AF|+4|BF|的最小值為________.
答案
解析 設(shè)A(x1,y1),B(x2,y2),則由拋物
15、線定義可得|AF|+4|BF|=x1++4=x1++4=x1+4x2+,設(shè)直線AB的方程為ky=x-,聯(lián)立拋物線方程得方程組消元整理得y2-2ky-1=0,由根與系數(shù)的關(guān)系可得y1y2=-1,又A,B在拋物線上,代入方程得yy=2x1·2x2=4x1x2=1,即x1x2=,因此根據(jù)基本不等式|AF|+4|BF|=x1+4x2+≥2+=2+=,當(dāng)且僅當(dāng)x1=4x2時取得最小值.
三、解答題
7. (13分)在平面直角坐標(biāo)系xOy中,已知橢圓+=1的左,右頂點分別為A,B,右焦點為F.設(shè)過點T(t,m)的直線TA,TB與此橢圓分別交于點M(x1,y1),N(x2,y2),其中m>0,y1>0,
16、y2<0.
(1)設(shè)動點P滿足:|PF|2-|PB|2=4,求點P的軌跡;
(2)設(shè)x1=2,x2=,求點T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān)).
(1)解 設(shè)P(x,y),由題知F(2,0),B(3,0),A(-3,0),
則|PF|2=(x-2)2+y2,|PB|2=(x-3)2+y2,
由|PF|2-|PB|2=4,得(x-2)2+y2-[(x-3)2+y2]=4,
化簡,得x=.故點P的軌跡方程是x=.
(2)解 將x1=2,x2=分別代入橢圓方程,
并考慮到y(tǒng)1>0,y2<0,得M,N.
則直線MA的方程為=,即x-3y+3=0
直線NB的方程為=,即5x-6y-15=0.
聯(lián)立方程解得x=7,y=,
所以點T的坐標(biāo)為.
(3)證明 如圖所示,
點T的坐標(biāo)為(9,m).
直線TA的方程為=,
直線TB的方程為=,
分別與橢圓+=1聯(lián)立方程,
解得M,
N.
直線MN的方程為
=.
令y=0,解得x=1,所以直線MN必過x軸上的一定點(1,0).