2022年高三數(shù)學一輪復習 專項訓練 不等式(含解析)
《2022年高三數(shù)學一輪復習 專項訓練 不等式(含解析)》由會員分享,可在線閱讀,更多相關《2022年高三數(shù)學一輪復習 專項訓練 不等式(含解析)(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學一輪復習 專項訓練 不等式(含解析)
1、(xx·湖南卷)設a>b>1,c<0,給出下列三個結(jié)論:
①>;②ac
2、>loga(b-c),知③正確. 答案:C 2、若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④ln a2>ln b2中,正確的不等式是 ( ). A.①④ B.②③ C.①③ D.②④ 解析 法一 由<<0,可知b<a<0.①中,因為a+b<0,ab>0,所以<0,>0.故有<,即①正確;②中,因為b<a<0,所以-b>-a>0.故-b>|a|,即|a|+b<0,故②錯誤;③中,因為b<a<0,又<<0,所以a->b-,故③正確;④中,因為b<a<0,根據(jù)y=x2在(-∞,0)上為減函數(shù),可得b2>a2>0,而y=ln x在定義域
3、(0,+∞)上為增函數(shù),所以ln b2>ln a2,故④錯誤.由以上分析,知①③正確. 3、設f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,則f(-2)的取值范圍是________. [正解] 法一 設f(-2)=mf(-1)+nf(1)(m,n為待定系數(shù)),則4a-2b=m(a-b)+n(a+b), 即4a-2b=(m+n)a+(n-m)b. 于是得解得 ∴f(-2)=3f(-1)+f(1). 又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10,故5≤f(-2)≤10. 4、如果-1<a+b<3,3<a-b<5,那么2a-3b的
4、取值范圍是( ). A.(2,8) B.(5,14) C.(6,13) D.(7,13) 解析 設a+b=x,a-b=y(tǒng), ∴-1<x<3,3<y<5,a=,b=, ∴2a-3b=x+y-(x-y)=-x+y. 又∵-<-x<,<y<, ∴6<-x+y<13, ∴2a-3b的取值范圍是(6,13). 答案 C 5.已知a>b,則下列不等式成立的是( ). A.a(chǎn)2-b2≥0 B.a(chǎn)c>bc C.|a|>|b| D.2a>2b 解析 A中,若a=-1,b=-2,則a2-b2≥0不成立;當c=0時,B不成立;當0>a>b時,C不成立;由a>b知2a>2b成
5、立,故選D. 答案 D 6.已知0<a<1,x=loga+loga ,y=loga5,z=loga -loga ,則( ). A.x>y>z B.z>y>x C.z>x>y D.y>x>z 解析 由題意得x=loga,y=loga,z=loga,而0<a<1,∴函數(shù)y=loga x在(0,+∞)上單調(diào)遞減,∴y>x>z. 答案 D 7.下面四個條件中,使a>b成立的充分不必要條件是( ). A.a(chǎn)>b+1 B.a(chǎn)>b-1 C.a(chǎn)2>b2 D.a(chǎn)3>b3 解析 由a>b+1,得a>b+1>b,即a>b,而由a>b不能得出a>b+1,因此,使a>b成立的充分不必要條
6、件是a>b+1. 答案 A 8.“|x|<2”是“x2-x-6<0”的( ). A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件 解析 不等式|x|<2的解集是(-2,2),而不等式x2-x-6<0的解集是(-2,3),于是當x∈(-2,2)時,可得x∈(-2,3),反之則不成立,故選A. 答案 A 9.若a,b是任意實數(shù),且a>b,則下列不等式成立的是( ). A.a(chǎn)2>b2 B.<1 C.lg(a-b)>0 D.a<b 解析 ∵0<<1,∴y=x是減函數(shù),又a>b, ∴a<
7、b. 答案 D 一元二次不等式及其解法 1、已知函數(shù)f(x)=(ax-1)(x+b),如果不等式f(x)>0的解集是(-1,3),則不等式f(-2x)<0的解集是 ( ). A.∪ B. C.∪ D. 解析 由f(x)>0,得ax2+(ab-1)x-b>0,又其解集是(-1,3),∴a<0.且解得a=-1或, ∴a=-1,b=-3.∴f(x)=-x2+2x+3, ∴f(-2x)=-4x2-4x+3, 由-4x2-4x+3<0,得4x2+4x-3>0, 解得x>或x<-,故選A. 答案 A 2、(xx·江蘇卷)已知f(x)是定義在R上的奇函數(shù).當x>0時,f(x)
8、=x2-4x,則不等式f(x)>x的解集用區(qū)間表示為________. 解析 ∵f(x)是定義在R上的奇函數(shù), ∴f(0)=0, 又當x<0時,-x>0, ∴f(-x)=x2+4x. 又f(x)為奇函數(shù), ∴f(-x)=-f(x), ∴f(x)=-x2-4x(x<0), ∴f(x)= (1)當x>0時,由f(x)>x得x2-4x>x,解得x>5; (2)當x=0時,f(x)>x無解; (3)當x<0時,由f(x)>x得-x2-4x>x,解得-5<x<0. 綜上得不等式f(x)>x的解集用區(qū)間表示為(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞) 2、關
9、于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1,x2),且x2-x1=15,則a等于 ( ). A. B. C. D. 解析:法一 ∵不等式x2-2ax-8a2<0的解集為(x1,x2),∴x1,x2是方程x2-2ax-8a2=0的兩根. 由根與系數(shù)的關系知 ∴x2-x1===15,又∵a>0,∴a=,故選A. 法二 由x2-2ax-8a2<0,得(x+2a)(x-4a)<0, ∵a>0,∴不等式x2-2ax-8a2<0的解集為(-2a,4a), 又∵不等式x2-2ax-8a2<0的解集為(x1,x2), ∴x1=-2a,x2=4a.∵
10、x2-x1=15, ∴4a-(-2a)=15,解得a=,故選A. 3、已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},則(?RP)∩Q=( ). A.[2,3] B.(-∞,-1]∪[3,+∞) C.(2,3] D.(+∞,-1]∪(3,+∞) 解析 依題意,得P={x|-1≤x≤2},Q={x|1<x≤3},則(?RP)∩Q=(2,3]. 答案 C 4.不等式x2+ax+4<0的解集不是空集,則實數(shù)a的取值范圍是( ). A.[-4,4] B.(-4,4) C.(-∞,-4]∪[4,+∞) D.(-∞,-4)∪(4,+∞) 解析 不等
11、式x2+ax+4<0的解集不是空集,只需Δ=a2-16>0,∴a<-4或a>4,故選D.
答案 D
5.已知f(x)=則不等式f(x) 12、a<0的解集是( ).
A.(2,3)
B.(-∞,2)∪(3,+∞)
C.
D.∪
解析 由題意知-,-是方程ax2-bx-1=0的根,所以由根與系數(shù)的關系得-+=,×=-.解得a=-6,b=5,不等式x2-bx-a<0即為x2-5x+6<0,解集為(2,3).
答案 A
7.已知函數(shù)f(x)=ax2+bx+c,不等式f(x)<0的解集為{x|x<-3,或x>1},則函數(shù)y=f(-x)的圖象可以為( ).
解析 由f(x)<0的解集為{x|x<-3,或x>1}知a<0,y=f(x)的圖象與x軸交點為(-3,0),(1,0),∴f(-x)圖象開口向下,與x軸交點為( 13、3,0),(-1,0).
答案 B
8.(xx·四川卷)已知f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.
解析 ∵f(x)是偶函數(shù),
∴f(x)=f(|x|).
又x≥0時,f(x)=x2-4x,
不等式f(x+2)<5?f(|x+2|)<5
?|x+2|2-4|x+2|<5
?(|x+2|-5)(|x+2|+1)<0
?|x+2|-5<0?|x+2|<5?-5<x+2<5?-7<x<3.
故解集為(-7,3).
答案 (-7,3)
9.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集 14、,則a的取值范圍是________.
解析 原不等式即(x-a)(x-1)≤0,當a<1時,不等式的解集為[a,1],此時只要a≥-4即可,即-4≤a<1;當a=1時,不等式的解為x=1,此時符合要求;當a>1時,不等式的解集為[1,a],此時只要a≤3即可,即1<a≤3.綜上可得-4≤a≤3.
答案 [-4,3]
10.(xx·安徽卷)已知一元二次不等式f(x)<0的解集為,則f(10x)>0的解集為( ).
A.{x|x<-1或x>-lg 2} B.{x|-1<x<-lg 2}
C.{x|x>-lg 2} D.{x|x<-lg 2}
解析 依題意知f(x)>0的解為 15、-1<x<,故-1<10x<,解得x<lg =-lg 2.
答案 D
11.已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求a的取值范圍.
解 (1)∵f(x)+2x>0的解集為(1,3),
f(x)+2x=a(x-1)(x-3),且a<0,
因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a.①
由方程f(x)+6a=0,得ax2-(2+4a)x+9a=0.②
因為方程②有兩個相等的根,
所以Δ=[-(2+4a)]
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會全文PPT
- 2025年寒假安全教育班會全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機關工委2024年度年終黨建工作總結(jié)述職匯報
- 心肺復蘇培訓(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學生活介紹
- XX單位2024年終專題組織生活會理論學習理論學習強黨性凝心聚力建新功
- 2024年XX單位個人述職述廉報告
- 一文解讀2025中央經(jīng)濟工作會議精神(使社會信心有效提振經(jīng)濟明顯回升)
- 2025職業(yè)生涯規(guī)劃報告自我評估職業(yè)探索目標設定發(fā)展策略
- 2024年度XX縣縣委書記個人述職報告及2025年工作計劃
- 寒假計劃中學生寒假計劃安排表(規(guī)劃好寒假的每個階段)
- 中央經(jīng)濟工作會議九大看點學思想強黨性重實踐建新功