秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版

上傳人:xt****7 文檔編號:105219543 上傳時間:2022-06-11 格式:DOC 頁數(shù):14 大小:209.50KB
收藏 版權申訴 舉報 下載
2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版_第1頁
第1頁 / 共14頁
2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版_第2頁
第2頁 / 共14頁
2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版》由會員分享,可在線閱讀,更多相關《2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年春九年級數(shù)學下冊《第29章 投影與視圖》單元測試卷(含解析)(新版)新人教版 一.選擇題(共10小題) 1.如圖,下列圖形從正面看是三角形的是(  ) A. B. C. D. 2.如圖2的三幅圖分別是從不同方向看圖1所示的工件立體圖得到的平面圖形,(不考慮尺寸)其中正確的是( ?。? A.①② B.①③ C.②③ D.③ 3.如圖,下面幾何體,從左邊看到的平面圖形是( ?。? A. B. C. D. 4.如圖,是由若干個大小相同的正方體搭成的幾何體的俯視圖,其中小正方形中的數(shù)字表示該位置上的正方體的個數(shù),則這個幾何體的左視圖是( ?。? A. B. C.

2、D. 5.一個幾何體由若干個大小相同的小正方體搭成,如圖是從三個不同方向看到的形狀圖,則搭成這個幾何體所用的小正方體的個數(shù)是( ?。? A.4 B.5 C.6 D.7 6.從三個不同方向看一個幾何體,得到的平面圖形如圖所示,則這個幾何體是(  ) A.圓柱 B.圓錐 C.棱錐 D.球 7.某同學畫出了如圖所示的幾何體的三種視圖,其中正確的是(  ) A.①② B.①③ C.②③ D.② 8.如圖所示,右面水杯的杯口與投影面平行,投影線的方向如箭頭所示,它的正投影圖是( ?。? A. B. C. D. 9.把一個正六棱柱如圖1擺放,光線由上向下照射此正六棱柱時的正投影是

3、(  ) A. B. C. D. 10.木棒長為1.2m,則它的正投影的長一定(  ) A.大于1.2m B.小于1.2m C.等于1.2m D.小于或等于1.2m 二.填空題(共5小題) 11.請寫出一個三視圖都相同的幾何體:  ?。? 12.如圖是六個棱長為1的立方塊組成的一個幾何體,其俯視圖的面積是  ?。? 13.一個幾何體有若干大小相同的小立方塊搭成,如圖分別是從它的正面、左面看到的形狀圖,則搭成該幾何體最多需要   個小立方塊. 14.如圖所示,是由若干相同大小的小立方體組成的立體圖形的三視圖,請在右邊的立體圖形中畫出所缺少的小立方體 

4、?。? 15.如圖,在A時測得某樹的影長為4m,B時又測得該樹的影長為16m,若兩次日照的光線互相垂直,則樹的高度為  ?。? 三.解答題(共4小題) 16.如圖,是一個小正方體所搭幾何體從上面看得到的平面圖形,正方形中的數(shù)字表示在該位置小正方體的上數(shù),請你畫出它從正面和從左面看得到的平面圖形. 17.已知圖為一幾何體從不同方向看的圖形: (1)寫出這個幾何體的名稱; (2)任意畫出這個幾何體的一種表面展開圖; (3)若長方形的高為10厘米,三角形的邊長為4厘米,求這個幾何體的側面積. 18.(1)由大小相同的小立方塊搭成的幾何體如下圖,請在下圖的方格中畫出該幾

5、何體的俯視圖和左視圖. (2)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要   個小立方塊,最多要   個小立方塊. 19.某數(shù)學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角. (1)求出樹高AB; (2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答) 2019年人教版九年級下冊數(shù)學《第29章 投影與視圖》單元測試卷 參考答案與試題解析 一.選擇題(共1

6、0小題) 1.如圖,下列圖形從正面看是三角形的是(  ) A. B. C. D. 【分析】分別寫出各選項中幾何體的從正面看到的圖形,進一步選擇答案即可. 【解答】解:A、三棱柱從正面看到的是長方形,不合題意; B、圓臺從正面看到的是梯形,不合題意; C、圓錐從正面看到的是三角形,符合題意; D、長方體從正面看到的是長方形,不合題意. 故選:C. 【點評】此題主要考查了簡單幾何體的三視圖,關鍵是掌握簡單幾何體的特征. 2.如圖2的三幅圖分別是從不同方向看圖1所示的工件立體圖得到的平面圖形,(不考慮尺寸)其中正確的是( ?。? A.①② B.①③ C.②③ D.③ 【分析

7、】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形. 【解答】解:從正面看可得到兩個左右相鄰的中間沒有界線的長方形,①錯誤; 從左面看可得到兩個上下相鄰的中間有界線的長方形,②錯誤; 從上面看可得到兩個左右相鄰的中間有界線的長方形,③正確. 故選:D. 【點評】本題考查了幾何體的三種視圖,掌握定義是關鍵.注意所有的看到的棱都應表現(xiàn)在三視圖中. 3.如圖,下面幾何體,從左邊看到的平面圖形是(  ) A. B. C. D. 【分析】根據(jù)由已知條件可知,左視圖有2列,每列小正方形數(shù)目分別為3,1,據(jù)此即可判斷. 【解答】解:已知條件可知,左視圖有2列,每列小正

8、方形數(shù)目分別為3,1. 故選:C. 【點評】本題主要考查了畫實物體的三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應注意小正方形的數(shù)目及位置. 4.如圖,是由若干個大小相同的正方體搭成的幾何體的俯視圖,其中小正方形中的數(shù)字表示該位置上的正方體的個數(shù),則這個幾何體的左視圖是( ?。? A. B. C. D. 【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.由圖示可得左視圖有3列,每列小正方形數(shù)目分別為3,2,1. 【解答】解:從左面看易得第一層有3個正方形,第二層最

9、左邊有2個正方形,第三層左邊有1個正方形. 故選:B. 【點評】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖. 5.一個幾何體由若干個大小相同的小正方體搭成,如圖是從三個不同方向看到的形狀圖,則搭成這個幾何體所用的小正方體的個數(shù)是( ?。? A.4 B.5 C.6 D.7 【分析】根據(jù)“俯視圖打地基,主視圖瘋狂蓋,左視圖拆違章”的原則解答可得. 【解答】解:幾何體分布情況如下圖所示: 則小正方體的個數(shù)為2+1+1+1=5, 故選:B. 【點評】本題考查學生對三視圖的掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,主視

10、圖瘋狂蓋,左視圖拆違章”就更容易得到答案. 6.從三個不同方向看一個幾何體,得到的平面圖形如圖所示,則這個幾何體是( ?。? A.圓柱 B.圓錐 C.棱錐 D.球 【分析】由主視圖和左視圖可得此幾何體為柱體,根據(jù)俯視圖是圓可判斷出此幾何體為圓柱. 【解答】解:∵主視圖和左視圖都是長方形, ∴此幾何體為柱體, ∵俯視圖是一個圓, ∴此幾何體為圓柱. 故選:A. 【點評】此題考查利用三視圖判斷幾何體,三視圖里有兩個相同可確定該幾何體是柱體,錐體還是球體,由另一個視圖確定其具體形狀. 7.某同學畫出了如圖所示的幾何體的三種視圖,其中正確的是( ?。? A.①② B.①③ C.②

11、③ D.② 【分析】從正面看到的圖叫做主視圖,從左面看到的圖叫做左視圖,從上面看到的圖叫做俯視圖.依此即可解題. 【解答】解:根據(jù)幾何體的擺放位置,主視圖和俯視圖正確.左視圖中間有一條橫線,故左視圖不正確. 故選:B. 【點評】本題考查了三種視圖及它的畫法,看得到的棱畫實線,看不到的棱畫虛線. 8.如圖所示,右面水杯的杯口與投影面平行,投影線的方向如箭頭所示,它的正投影圖是( ?。? A. B. C. D. 【分析】根據(jù)題意:水杯的杯口與投影面平行,即與光線垂直;則它的正投影圖是應是D. 【解答】解:依題意,光線是垂直照下的,故只有D符合. 故選:D. 【點評】本題考查正

12、投影的定義及正投影形狀的確定. 9.把一個正六棱柱如圖1擺放,光線由上向下照射此正六棱柱時的正投影是(  ) A. B. C. D. 【分析】根據(jù)平行投影特點以及圖中正六棱柱的擺放位置即可求解. 【解答】解:把一個正六棱柱如圖擺放,光線由上向下照射此正六棱柱時的正投影是正六邊形. 故選:A. 【點評】本題考查了平行投影特點,不同位置,不同時間,影子的大小、形狀可能不同,具體形狀應按照物體的外形即光線情況而定. 10.木棒長為1.2m,則它的正投影的長一定(  ) A.大于1.2m B.小于1.2m C.等于1.2m D.小于或等于1.2m 【分析】投影線垂直于投影底幕

13、面時,稱正投影,根據(jù)木棒的不同位置可得不同的線段長度. 【解答】解:正投影的長度與木棒的擺放角度有關系,但無論怎樣擺都不會超過1.2 m. 故選:D. 【點評】考查正投影的定義,注意同一物體的所處的位置不同得到正投影也不同. 二.填空題(共5小題) 11.請寫出一個三視圖都相同的幾何體: 球(或正方體)?。? 【分析】三視圖分為主視圖、左視圖、俯視圖,分別是從物體正面、左面和上面看,所得到的圖形,找到從3個方向得到的圖形全等的幾何體即可. 【解答】解:球的三視圖是3個全等的圓;正方體的三視圖是3個全等的正方形, 故答案為:球(或正方體). 【點評】考查三視圖的有關知識,注意三視

14、圖都相同的常見的幾何體有球或正方體. 12.如圖是六個棱長為1的立方塊組成的一個幾何體,其俯視圖的面積是 5?。? 【分析】先得出從上面看所得到的圖形,再求出俯視圖的面積即可. 【解答】解:從上面看易得第一行有3個正方形,第二行有2個正方形, 共5個正方形,面積為5. 故答案為5. 【點評】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖,同時考查了面積的計算. 13.一個幾何體有若干大小相同的小立方塊搭成,如圖分別是從它的正面、左面看到的形狀圖,則搭成該幾何體最多需要 14 個小立方塊. 【分析】從主視圖上弄清物體的上下和左右形狀,從左視圖上弄清楚物體的上下和前

15、后形狀,綜合分析,即可得出答案. 【解答】解:根據(jù)主視圖和左視圖可得: 搭這樣的幾何體最多需要6+3+5=14個小正方體; 故答案為:14. 【點評】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖;注意主視圖主要告知組成的幾何體的層數(shù)和列數(shù). 14.如圖所示,是由若干相同大小的小立方體組成的立體圖形的三視圖,請在右邊的立體圖形中畫出所缺少的小立方體 略?。? 【分析】由左視圖可以知道,左邊應該為三個小立方體,且在正前方,添加即可. 【解答】解: 【點評】此題主要考查三視圖的畫圖、學生的觀察能力和空間想象能力. 15.如圖,在A時測

16、得某樹的影長為4m,B時又測得該樹的影長為16m,若兩次日照的光線互相垂直,則樹的高度為 8m?。? 【分析】根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△CDF,進而可得=;即DC2=ED?FD,代入數(shù)據(jù)可得答案. 【解答】解:如圖:過點C作CD⊥EF, 由題意得:△EFC是直角三角形,∠ECF=90°, ∴∠EDC=∠CDF=90°, ∴∠E+∠ECD=∠ECD+∠DCF=90°, ∴∠E=∠DCF, ∴Rt△EDC∽Rt△CDF, 有=;即DC2=ED?FD, 代入數(shù)據(jù)可得DC2=64, DC=8; 故答案為:8m. 【點評】本題考查了平行投影,通過投影的

17、知識結合三角形的相似,求解高的大??;是平行投影性質在實際生活中的應用. 三.解答題(共4小題) 16.如圖,是一個小正方體所搭幾何體從上面看得到的平面圖形,正方形中的數(shù)字表示在該位置小正方體的上數(shù),請你畫出它從正面和從左面看得到的平面圖形. 【分析】由已知條件可知,主視圖有3列,每列小正方數(shù)形數(shù)目分別為3,2,3,左視圖有2列,每列小正方形數(shù)目分別為3,3.據(jù)此可畫出圖形. 【解答】解: 【點評】本題考查幾何體的三視圖畫法.由幾何體的俯視圖及小正方形內的數(shù)字,可知主視圖的列數(shù)與俯視數(shù)的列數(shù)相同,且每列小正方形數(shù)目為俯視圖中該列小正方形數(shù)字中的最大數(shù)字.左視圖的列數(shù)與俯視圖的行數(shù)相

18、同,且每列小正方形數(shù)目為俯視圖中相應行中正方形數(shù)字中的最大數(shù)字. 17.已知圖為一幾何體從不同方向看的圖形: (1)寫出這個幾何體的名稱; (2)任意畫出這個幾何體的一種表面展開圖; (3)若長方形的高為10厘米,三角形的邊長為4厘米,求這個幾何體的側面積. 【分析】(1)只有棱柱的主視圖和左視圖才能出現(xiàn)長方形,根據(jù)俯視圖是三角形,可得到此幾何體為直三棱柱; (2)應該會出現(xiàn)三個長方形,兩個三角形; (3)側面積為3個長方形,它的長和寬分別為10厘米,4厘米,計算出一個長方形的面積,乘3即可. 【解答】解:(1)直三棱柱; (2)如圖所示: ; (3)3×10

19、×4=120cm2. 【點評】用到的知識點為:棱柱的側面都是長方形,上下底面是幾邊形就是幾棱柱. 18.(1)由大小相同的小立方塊搭成的幾何體如下圖,請在下圖的方格中畫出該幾何體的俯視圖和左視圖. (2)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要 5 個小立方塊,最多要 7 個小立方塊. 【分析】(1)從上面看得到從左往右3列正方形的個數(shù)依次為1,2,1,依此畫出圖形即可;從左面看得到從左往右2列正方形的個數(shù)依次為2,1,依此畫出圖形即可; (2)由俯視圖易得最底層小立方塊的個數(shù),由左視圖找到其余層數(shù)里最少個數(shù)和最多個數(shù)相加即可

20、. 【解答】解:(1)作圖如下: ; (2)解:由俯視圖易得最底層有4個小立方塊,第二層最少有1個小立方塊,所以最少有5個小立方塊; 第二層最多有3個小立方塊,所以最多有7個小立方塊. 故答案是:5;7. 【點評】考查了作圖﹣三視圖,用到的知識點為:三視圖分為主視圖、左視圖、俯視圖,分別是從物體正面、左面和上面看,所得到的圖形. 19.某數(shù)學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角. (1)求出樹高AB; (2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面

21、夾角保持不變.求樹的最大影長.(用圖(2)解答) 【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函數(shù)即可求得AB的長; (2)在△AB1C1中,已知AB1的長,即AB的長,∠B1AC1=45°,∠B1C1A=30°.過B1作AC1的垂線,在直角△AB1N中根據(jù)三角函數(shù)求得AN,BN;再在直角△B1NC1中,根據(jù)三角函數(shù)求得NC1的長,再根據(jù)當樹與地面成60°角時影長最大,根據(jù)三角函數(shù)即可求解. 【解答】解:(1)AB=ACtan30°=12×=4(米). 答:樹高約為4米. (2)如圖(2),B1N=AN=AB1sin45°=4×=2(米). NC1=NB1tan60°=2×=6(米). AC1=AN+NC1=2+6. 當樹與地面成60°角時影長最大AC2(或樹與光線垂直時影長最大或光線與半徑為AB的⊙A相切時影長最大) AC2=2AB2=; 【點評】此題考查了平行投影;通過作高線轉化為直角三角形的問題,當太陽光線與圓弧相切時樹影最長,是解題的關鍵.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!