《八年級數(shù)學(xué) 一次函數(shù)教案(三)》由會員分享,可在線閱讀,更多相關(guān)《八年級數(shù)學(xué) 一次函數(shù)教案(三)(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、八年級數(shù)學(xué) 一次函數(shù)教案(三)
教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)
利用一次函數(shù)知識解決相關(guān)實(shí)際問題.
(二)能力訓(xùn)練目標(biāo)
體會解決問題方法多樣性,發(fā)展創(chuàng)新實(shí)踐能力。
教學(xué)重點(diǎn)
靈活運(yùn)用知識解決相關(guān)問題.
教學(xué)難點(diǎn)
靈活運(yùn)用有關(guān)知識解決相關(guān)問題.
教學(xué)方法
實(shí)踐─應(yīng)用─創(chuàng)新.
教具準(zhǔn)備
多媒體演示.
教學(xué)過程
1.提出問題,創(chuàng)設(shè)情境
我們前面學(xué)習(xí)了有關(guān)一次函數(shù)的一些知識及如何確定解析式,如何利用一次函數(shù)知識解決相關(guān)實(shí)踐問題呢?
這將是我們這節(jié)課要解決
2、的主要問題.
Ⅱ.導(dǎo)入新課
下面我們來學(xué)習(xí)一次函數(shù)的應(yīng)用.
例1 小芳以200米/分的速度起跑后,先勻加速跑5分鐘,每分提高速度20米/分,又勻速跑10分鐘.試寫出這段時(shí)間里她跑步速度y(米/分)隨跑步時(shí)間x(分)變化的函數(shù)關(guān)系式,并畫出圖象.
分析:本題y隨x變化的規(guī)律分成兩段:前5分鐘與后10分鐘.寫y隨x變化函數(shù)關(guān)系式時(shí)要分成兩部分.畫圖象時(shí)也要分成兩段來畫,且要注意各自變量的取值范圍.
解:y=
我們把這種函數(shù)叫做分段函數(shù).在解決分析函數(shù)問題時(shí),要特別注意自變量取值范圍的劃分,既要科學(xué)合理,又要符合實(shí)際.
例2 A城有肥料200噸,B城有
3、肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng).從A城往C、D兩鄉(xiāng)運(yùn)肥料費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料費(fèi)用分別為每噸15元和24元.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?
通過這一活動讓學(xué)生逐步學(xué)會應(yīng)用有關(guān)知識尋求出解決實(shí)際問題的方法,提高靈活運(yùn)用能力.
教師活動:
引導(dǎo)學(xué)生討論分析思考.從影響總運(yùn)費(fèi)的變量有哪些入手,進(jìn)而尋找變量個(gè)數(shù)及變量間關(guān)系,探究出總運(yùn)費(fèi)與變量間的函數(shù)關(guān)系,從而利用函數(shù)知識解決問題.
學(xué)生活動:
在教師指導(dǎo)下,經(jīng)歷思考、討論、分析,找出影響總運(yùn)費(fèi)的變量,并認(rèn)清它們之間的
4、關(guān)系,確定函數(shù)關(guān)系,最終解決實(shí)際問題.
活動過程及結(jié)論:
通過分析思考,可以發(fā)現(xiàn):A──C,A──D,B──C,B──D運(yùn)肥料共涉及4個(gè)變量.它們都是影響總運(yùn)費(fèi)的變量.然而它們之間又有一定的必然聯(lián)系,只要確定其中一個(gè)量,其余三個(gè)量也就隨之確定.這樣我們就可以設(shè)其中一個(gè)變量為x,把其他變量用含x的代數(shù)式表示出來:
若設(shè)A──Cx噸,則:
由于A城有肥料200噸:A─D,200─x噸.
由于C鄉(xiāng)需要240噸:B─C,240─x噸.
由于D鄉(xiāng)需要260噸:B─D,260─200+x噸.
那么,各運(yùn)輸費(fèi)用為:
A──C
5、 20x
A──D 25(200-x)
B──C 15(240-x)
B──D 24(60+x)
若總運(yùn)輸費(fèi)用為y的話,y與x關(guān)系為:
y=20x+25(200-x)+15(240-x)+24(60+x).
化簡得:
y=40x+10040 (0≤x≤200).
由解析式或圖象都可看出,當(dāng)x=0時(shí),y值最小,為10040.
因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸.此時(shí)總運(yùn)費(fèi)最少,為10040元.
若A城有肥料300噸,B城200噸,其他條件不變,又該怎樣
6、調(diào)運(yùn)呢?
解題方法與思路不變,只是過程有所不同:
A──C x噸 A──D 300-x噸
B──C 240-x噸 B──D x-40噸
反映總運(yùn)費(fèi)y與x的函數(shù)關(guān)系式為:
y=20x+25(300-x)+15(240-x)+24(x-40).
化簡:y=4x+10140 (40≤x≤300).
由解析式可知:
當(dāng)x=40時(shí) y值最小為:y=4×40+10140=10300
因此從A城運(yùn)往C鄉(xiāng)40噸,運(yùn)往D鄉(xiāng)260噸;從B城運(yùn)往C鄉(xiāng)200噸,運(yùn)往D鄉(xiāng)0噸.此時(shí)總運(yùn)費(fèi)最小值為10300噸.
7、 如何確定自變量x的取值范圍是40≤x≤300的呢?
由于B城運(yùn)往D鄉(xiāng)代數(shù)式為x-40噸,實(shí)際運(yùn)費(fèi)中不可能是負(fù)數(shù),而且A城中只有300噸肥料,也不可能超過300噸,所以x取值應(yīng)在40噸到300噸之間.
總結(jié):
解決含有多個(gè)變量的問題時(shí),可以分析這些變量間的關(guān)系,選取其中某個(gè)變量作為自變量,然后根據(jù)問題條件尋求可以反映實(shí)際問題的函數(shù).這樣就可以利用函數(shù)知識來解決了.
在解決實(shí)際問題過程中,要注意根據(jù)實(shí)際情況確定自變量取值范圍.就像剛才那個(gè)變形題一樣,如果自變量取值范圍弄錯(cuò)了,很容易出現(xiàn)失誤,得到錯(cuò)誤的結(jié)論.
Ⅲ練習(xí)
從A、B兩水庫向甲、
8、乙兩地調(diào)水,其中甲地需水15萬噸,乙地需水13萬噸,A、B兩水庫各可調(diào)出水14萬噸.從A地到甲地50千米,到乙地30千米;從B地到甲地60千米,到乙地45千米.設(shè)計(jì)一個(gè)調(diào)運(yùn)方案使水的調(diào)運(yùn)量(萬噸·千米)最少.
解答:設(shè)總調(diào)運(yùn)量為y萬噸·千米,A水庫調(diào)往甲地水x萬噸,則調(diào)往乙地(14-x)萬噸,B水庫調(diào)往甲地水(15-x)萬噸,調(diào)往乙地水(x-1)萬噸.
由調(diào)運(yùn)量與各距離的關(guān)系,可知反映y與x之間的函數(shù)為:
y=50x+30(14-x)+60(15-x)+45(x-1).
化簡得:y=5x+1275 (1≤x≤14).
由解析式可知:當(dāng)x=1時(shí),y值最小,為y=5×1+1275=1280.
因此從A水庫調(diào)往甲地1萬噸水,調(diào)往乙地13萬噸水;從B水庫調(diào)往甲地14萬噸水,調(diào)往乙地0萬噸水.此時(shí)調(diào)運(yùn)量最小,調(diào)運(yùn)量為1280萬噸·千米.
Ⅳ.小結(jié)
本節(jié)課我們學(xué)習(xí)并掌握了分段函數(shù)在實(shí)際問題中的應(yīng)用,特別是學(xué)習(xí)了解決多個(gè)變量的函數(shù)問題,為我們以后解決實(shí)際問題開辟了一條坦途,使我們進(jìn)一步認(rèn)識到學(xué)習(xí)函數(shù)的重要性和必要性.
Ⅴ.課后作業(yè)
習(xí)題11.2─7、9、11、12題.