2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 概率 第2節(jié) 古典概型教學(xué)案 文(含解析)北師大版
《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 概率 第2節(jié) 古典概型教學(xué)案 文(含解析)北師大版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第10章 概率 第2節(jié) 古典概型教學(xué)案 文(含解析)北師大版(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第二節(jié) 古典概型 [考綱傳真] 1.理解古典概型及其概率計(jì)算公式.2.會計(jì)算一些隨機(jī)事件所包含的基本事件數(shù)及事件發(fā)生的概率. 1.古典概型 具有以下兩個特征的隨機(jī)試驗(yàn)的數(shù)學(xué)模型稱為古典概型(古典的概率模型). (1)試驗(yàn)的所有可能結(jié)果只有有限個,每次試驗(yàn)只出現(xiàn)其中的一個結(jié)果; (2)每一個試驗(yàn)結(jié)果出現(xiàn)的可能性相同. 2.古典概型的概率公式 P(A)==. 確定基本事件個數(shù)的三種方法 (1)列舉法:此法適合基本事件較少的古典概型. (2)列表法(坐標(biāo)法):此法適合多個元素中選定兩個元素的試驗(yàn). (3)樹狀圖法:適合有順序的問題及較復(fù)雜問題中基本事件個數(shù)的探求. [
2、基礎(chǔ)自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)擲一枚硬幣兩次,出現(xiàn)“兩個正面”“一正一反”“兩個反面”,這三個結(jié)果是等可能事件. ( ) (2)從-3,-2,-1,0,1,2中任取一數(shù),取到的數(shù)小于0與不小于0的可能性相同. ( ) (3)利用古典概型的概率可求“在邊長為2的正方形內(nèi)任取一點(diǎn),這點(diǎn)到正方形中心距離小于或等于1”的概率. ( ) [答案] (1)× (2)√ (3)× 2.(教材改編)從1,2,3,4,5中隨機(jī)取出三個不同的數(shù),則其和為偶數(shù)的基本事件個數(shù)為( ) A.4 B.5 C.6 D.7
3、C [任取三個數(shù)和為偶數(shù)共有:(1,2,3),(1,2,5),(1,3,4),(1,4,5),(2,3,5),(3,4,5)共6個,選C.] 3.(教材改編)袋中裝有6個白球,5個黃球,4個紅球,從中任取一球,則取到白球的概率為( ) A. B. C. D. A [從袋中任取一球,有15種取法,其中取到白球的取法有6種,則所求概率為P==.] 4.(教材改編)一個口袋內(nèi)裝有2個白球和3個黑球,則在先摸出1個白球后放回的條件下,再摸出1個白球的概率是________. [先摸出1個白球后放回,再摸出1個白球的概率,實(shí)質(zhì)上就是第二次摸到白球的概率,因?yàn)榇鼉?nèi)裝有2個白球
4、和3個黑球,因此概率為.] 5.現(xiàn)從甲、乙、丙3人中隨機(jī)選派2人參加某項(xiàng)活動,則甲被選中的概率為________. [從甲、乙、丙3人中隨機(jī)選派2人參加某項(xiàng)活動,有甲乙,甲丙,乙丙三種可能,則甲被選中的概率為.] 古典概型的概率計(jì)算 【例1】 (1)(2017·全國卷Ⅱ)從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( ) A. B. C. D. (2)袋中有形狀、大小都相同的4個球,其中1個白球,1個紅球,2個黃球,從中一次隨機(jī)摸出2個球,則這2個球顏色
5、不同的概率為________. (1)D (2) [(1)從5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張的情況如圖: 基本事件總數(shù)為25,第一張卡片上的數(shù)大于第二張卡片上的數(shù)的事件數(shù)為10, ∴所求概率P==. 故選D. (2)設(shè)取出的2個球顏色不同為事件A,基本事件有:(白,紅),(白,黃),(白,黃),(紅,黃),(紅,黃),(黃,黃),共6種,事件A包含5種,故P(A)=.] (3)某旅游愛好者計(jì)劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游. ①若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率; ②若從亞洲國家和歐洲國家中
6、各任選1個,求這2個國家包括A1但不包括B1的概率. [解] ①由題意知,從6個國家中任選兩個國家,其一切可能的結(jié)果組成的基本事件有:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15個. 所選兩個國家都是亞洲國家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3個,則所求事件的概率為P==. ②從亞洲國家和歐洲國家中各任選一個,其一切可能的結(jié)果組成的基本事件有:{A
7、1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9個. 包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2個,則所求事件的概率為P=. [拓展探究] (1)本例(2)中,若將4個球改為顏色相同,標(biāo)號分別為1,2,3,4的四個小球,從中一次取兩球,求標(biāo)號和為奇數(shù)的概率. (2)本例(2)中,若將條件改為有放回地取球,取兩次,求兩次取球顏色相同的概率. [解] (1)基本事件數(shù)仍為6.設(shè)標(biāo)號和為奇數(shù)為事件A,則A包含的基本事件為(1,2),(1,4),(2,3),(
8、3,4),共4種, 所以P(A)==. (2)基本事件為(白,白),(白,紅),(白,黃),(白,黃),(紅,紅),(紅,白),(紅,黃),(紅,黃),(黃,黃),(黃,白),(黃,紅),(黃,黃),(黃,黃),(黃,白),(黃,紅),(黃,黃),共16種,其中顏色相同的有6種, 故所求概率P==. [規(guī)律方法] 求古典概型概率的步驟 (1)判斷本試驗(yàn)的結(jié)果是否為等可能事件,設(shè)出所求事件A; (2)分別求出基本事件的總數(shù)n與所求事件A中所包含的基本事件個數(shù)m; (3)利用公式P(A)=,求出事件A的概率. (1)(2016·全國卷Ⅲ)小敏打開計(jì)算機(jī)時(shí),忘記了開機(jī)密碼的前兩位,
9、只記得第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機(jī)的概率是( ) A. B. C. D. (2)從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( ) A. B. C. D. (1)C (2)D [(1)∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)}, ∴事件總數(shù)有
10、15種. ∵正確的開機(jī)密碼只有1種,∴P=. (2)如表所示 第二次 第一次 1 2 3 4 5 1 (1,1) (1,2) (1,3) (1,4) (1,5) 2 (2,1) (2,2) (2,3) (2,4) (2,5) 3 (3,1) (3,2) (3,3) (3,4) (3,5) 4 (4,1) (4,2) (4,3) (4,4) (4,5) 5 (5,1) (5,2) (5,3) (5,4) (5,5) 總計(jì)有25種情況,滿足條件的有10種, 所以所求概率為=.故選D.] 古典概型與統(tǒng)
11、計(jì)的綜合應(yīng)用 【例2】 空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴(yán)重污染.一環(huán)保人士記錄2018年某地某月10天的AQI的莖葉圖如圖所示. (1)利用該樣本估計(jì)該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天計(jì)算) (2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天中,隨機(jī)地抽取兩天深入分析各種污染指標(biāo),求該兩天的空氣質(zhì)量等級恰好不同的概率. [解]
12、(1)從莖葉圖中發(fā)現(xiàn)該樣本中空氣質(zhì)量優(yōu)的天數(shù)為1,空氣質(zhì)量良的天數(shù)為3,故該樣本中空氣質(zhì)量優(yōu)良的頻率為=,估計(jì)該月空氣質(zhì)量優(yōu)良的頻率為,從而估計(jì)該月空氣質(zhì)量優(yōu)良的天數(shù)為30×=12. (2)該樣本中為輕度污染的共4天,分別記為a1,a2,a3,a4;為中度污染的共1天,記了b;為重度污染的共1天,記為c.從中隨機(jī)抽取兩天的所有可能結(jié)果有:(a1,a2),(a1,a3),(a1,a4),(a1,b),(a1,c),(a2,a3),(a2,a4),(a2,b),(a2,c),(a3,a4),(a3,b),(a3,c),(a4,b),(a4,c),(b,c),共15個. 其中空氣質(zhì)量等級恰好不同
13、的結(jié)果有(a1,b),(a1,c),(a2,b),(a2,c),(a3,b),(a3,c),(a4,b),(a4,c),(b,c),共9個. 所以該兩天的空氣質(zhì)量等級恰好不同的概率為=. [規(guī)律方法] 求解古典概型與統(tǒng)計(jì)交匯問題的思路 (1)依據(jù)題目的直接描述或頻率分布表、頻率分布直方圖、莖葉圖等統(tǒng)計(jì)圖表給出的信息,提煉出需要的信息. (2)進(jìn)行統(tǒng)計(jì)與古典概型概率的正確計(jì)算. 交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動機(jī)制,且保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)
14、越多,費(fèi)率也就越高,具體浮動情況如下表: 交強(qiáng)險(xiǎn)浮動因素和費(fèi)率浮動比率表 浮動因素 浮動比率 A1 上一個年度未發(fā)生有責(zé)任道路交通事故 下浮10% A2 上兩個年度未發(fā)生有責(zé)任道路交通事故 下浮20% A3 上三個及以上年度未發(fā)生有責(zé)任道路交通事故 下浮30% A4 上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 0% A5 上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 上浮10% A6 上一個年度發(fā)生有責(zé)任道路交通死亡事故 上浮30% 某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年該品牌同型號私家車的下
15、一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格: 類型 A1 A2 A3 A4 A5 A6 數(shù)量 10 5 5 20 15 5 (1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率; (2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題: ①若該銷售商店內(nèi)有6輛(年齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛車,求這2輛車恰好有一輛為事故車的概率; ②若該銷售商一次購進(jìn)12
16、0輛(年齡已滿三年)該品牌二手車,求一輛車盈利的平均值. [解] (1)一輛普通6座以下私家車第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率為=. (2)①由統(tǒng)計(jì)數(shù)據(jù)可知,該銷售商店內(nèi)的6輛該品牌(年齡已滿三年)的二手車有2輛事故車,設(shè)為b1,b2.4輛非事故車設(shè)為a1,a2,a3,a4.從6輛車中隨機(jī)挑選2輛車的情況有(b1,b2),(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4),共15種. 其中2輛車恰好有一輛為事故車的情
17、況有(b1,a1) ,(b1,a2),(b1,a3),(b1,a4),(b2,a1),(b2,a2),(b2,a3),(b2,a4),共8種. 所以該顧客在店內(nèi)隨機(jī)挑選2輛車,這2輛車恰好有一輛為事故車的概率為. ②由統(tǒng)計(jì)數(shù)據(jù)可知,該銷售商一次購進(jìn)120輛該品牌(車齡已滿三年)的二手車有事故車40輛,非事故車80輛, [(-5 000)×40+10 000×80]=5 000(元). 1.(2018·全國卷Ⅱ)從2名男同學(xué)和3名女同學(xué)中任選2人參加社會服務(wù),則選中的2人都是女同學(xué)的概率為( ) A.0.6 B.0.5 C.0.4 D.0.3 D [將2名男同學(xué)
18、分別記為x,y,3名女同學(xué)分別記為a,b,c.設(shè)“選中的2人都是女同學(xué)”為事件A,則從5名同學(xué)中任選2人參加社區(qū)服務(wù)的所有可能情況有(x,y),(x,a),(x,b),(x,c),(y,a),(y,b),(y,c),(a,b),(a,c),(b,c),共10種,其中事件A包含的可能情況有(a,b),(a,c),(b,c),共3種,故P(A)==0.3. 故選D.] 2.(2016·全國卷Ⅰ)為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色的花不在同一花壇的概率是( ) A. B. C. D. C [從4
19、種顏色的花中任選2種顏色的花種在一個花壇中,余下2種顏色的花種在另一個花壇的種法有:紅黃—白紫、紅白—黃紫、紅紫—白黃、黃白—紅紫、黃紫—紅白、白紫—紅黃,共6種,其中紅色和紫色的花不在同一花壇的種法有:紅黃—白紫、紅白—黃紫、黃紫—紅白、白紫—紅黃,共4種,故所求概率為P==,故選C.] 3.(2015·全國卷Ⅰ)如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為( ) A. B. C. D. C [從1,2,3,4,5中任取3個不同的數(shù)共有如下10個不同的結(jié)果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股數(shù)只有(3,4,5),所以概率為.故選C.] - 8 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護(hù)納稅人的合法權(quán)益)
- 2024《文物保護(hù)法》全文解讀學(xué)習(xí)(加強(qiáng)對文物的保護(hù)促進(jìn)科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩