2、x>3,所以原不等式的解集為(-3,1)∪(3,+∞).
答案:A
3.已知a∈R,不等式≥1的解集為p,且-2?p,則a的取值范圍為( )
A.(-3,+∞)
B.(-3,2)
C.(-∞,2)∪(3,+∞)
D.(-∞,-3)∪[2,+∞)
解析:∵-2?p,∴<1或-2+a=0,解得a≥2或a<-3.
答案:D
4.若對任意正實數x,不等式≤恒成立,則實數a的最小值為( )
A.1 B.
C. D.
解析:因為≤,即a≥,而=≤(當且僅當x=1時取等號),所以a≥.
答案:C
5.(2018·蘭州模擬)若變量x,y滿足約束條件則z=2x·y的最大值為
3、( )
A.16 B.8
C.4 D.3
解析:作出不等式組表示的平面區(qū)域如圖中陰影部分所示.
又z=2x·y=2x-y,令u=x-y,則直線u=x-y在點(4,0)處u取得最大值,此時z取得最大值且zmax=24-0=16.
答案:A
6.對于任意實數a,b,c,d,有以下四個命題:
①若ac2>bc2,則a>b;
②若a>b,c>d,則a+c>b+d;
③若a>b,c>d,則ac>bd;
④若a>b,則>.
其中正確的命題有( )
A.1個 B.2個
C.3個 D.4個
解析:①由ac2>bc2,得c≠0,則a>b,①正確;
②由不等式的同向可加性
4、可知②正確;
③錯誤,當d-2,
但 <.故正確的命題有2個.
答案:B
7.(2018·成都質檢)若實數x,y滿足不等式組且x-y的最大值為5,則實數m的值為( )
A.0 B.-1
C.-2 D.-5
解析:根據不等式組,作出可行域如圖中陰影部分所示,令z=x-y,則y=x-z,當直線y=x-z過點B(1-m,m)時,z取得最大值5,所以1-m-m=5?m=-2.
答案:C
8.對于函數f(x),如果存在x0≠0,使得f(x0)=-f(-x0),則稱(x0,f(x0))與(-x0,f(-x0)
5、)為函數圖象的一組奇對稱點.若f(x)=ex-a(e為自然對數的底數)的圖象上存在奇對稱點,則實數a的取值范圍是( )
A.(-∞,1) B.(1,+∞)
C.(e,+∞) D.[1,+∞)
解析:因為存在實數x0(x0≠0),
使得f(x0)=-f(-x0),
則ex0-a=-e-x0+a,即ex0+=2a,又x0≠0,所以2a=ex0+>2=2,即a>1.
答案:B
9.(2018·長沙模擬)若1≤log2(x-y+1)≤2,|x-3|≤1,則x-2y的最大值與最小值之和是( )
A.0 B.-2
C.2 D.6
解析:1≤log2(x-y+1)≤2,|x-
6、3|≤1,
即變量x,y滿足約束條件
即
作出不等式組表示的可行域如圖中陰影部分所示,
可得x-2y在A(2,-1),C(4,3)處取得最大值、最小值分別為4,-2,其和為2.
答案:C
10.已知函數f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導函數,則不等式(x2-2x-3)f′(x)>0的解集為( )
A.(-∞,-2)∪(1,+∞)
B.(-∞,-2)∪(1,2)
C.(-∞,-1)∪(-1,0)∪(2,+∞)
D.(-∞,-1)∪(-1,1)∪(3,+∞)
解析:由f(x)的圖象可知,在(-∞,-1),(1,+∞)上,f′(x)>0,在(-
7、1,1)上,f′(x)<0.由(x2-2x-3)·f′(x)>0,得或
即或
所以不等式的解集為(-∞,-1)∪(-1,1)∪(3,+∞).
答案:D
11.(2018·九江模擬)已知點P(x,y)滿足過點P的直線與圓x2+y2=14相交于A,B兩點,則|AB|的最小值為( )
A.2 B.2
C.2 D.4
解析:不等式組所表示的平面區(qū)域為△CDE及其內部(如圖),
其中C(1,3),D(2,2),E(1,1),且點C,D,E均在圓x2+y2=14的內部,故要使|AB|最小,則AB⊥OC,因為|OC|=,所以|AB|=2×=4,故選D.
答案:D
12.某企業(yè)生
8、產甲、乙兩種產品均需用A,B兩種原料.已知生產1噸每種產品所需原料及每天原料的可用限額如表所示.如果生產1噸甲、乙產品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( )
甲
乙
原料限額
A(噸)
3
2
12
B(噸)
1
2
8
A.12萬元 B.16萬元
C.17萬元 D.18萬元
解析:根據題意,設每天生產甲x噸,乙y噸,則目標函數為z=3x+4y,作出不等式組所表示的平面區(qū)域如圖中陰影部分所示,
作出直線3x+4y=0并平移,易知當直線經過點A(2,3)時,z取得最大值且zmax=3×2+4×3=18,故該企業(yè)每天可獲得最大利
9、潤為18萬元,選D.
答案:D
二、填空題
13.(2017·高考全國卷Ⅰ)設x,y滿足約束條件則z=3x-2y的最小值為__________.
解析:
作出不等式組
所表示的可行域如圖中陰影部分所示,由可行域知,當直線y=x-過點A時,在y軸上的截距最大,此時z最小,由解得∴zmin=-5.
答案:-5
14.在R上定義運算:x*y=x(1-y),若不等式(x-a)*(x+a)≤1對任意的x恒成立,則實數a的取值范圍是__________.
解析:由于(x-a)*(x+a)=(x-a)(1-x-a),則不等式(x-a)*(x+a)≤1對任意的x恒成立,即x2-x-a
10、2+a+1≥0恒成立,所以a2-a-1≤x2-x
恒成立,又x2-x=2-≥-,則a2-a-1≤-,解得-≤a≤.
答案:
15.(2018·湖南五市十校聯考)設z=kx+y,其中實數x,y滿足若z的最大值為12,則實數k=__________.
解析:作出可行域,如圖中陰影部分所示.
由圖可知當0≤-k<時,直線y=-kx+z經過點M(4,4)時z最大,所以4k+4=12,解得k=2(舍去);當-k≥時,直線y=-kx+z經過點B(0,2)時z最大,此時z的最大值為2,不合題意;當-k<0時,直線y=-kx+z經過點M(4,4)時z最大,所以4k+4=12,解得k=2,符合.綜上可知k=2.
答案:2
16.記min{a,b}為a,b兩數的最小值.當正數x,y變化時,
令t=min,則t的最大值為__________.
解析:因為x>0,y>0,所以問題轉化為t2≤(2x+y)·=≤==2,當且僅當x=y(tǒng)時等號成立,所以0