秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版

上傳人:xt****7 文檔編號:105718269 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?11KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版_第1頁
第1頁 / 共7頁
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版_第2頁
第2頁 / 共7頁
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)一輪復(fù)習(xí) 選修4系列 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 文 北師大版 1.已知曲線C:=1,直線l:(t為參數(shù)). (1)寫出曲線C的參數(shù)方程,直線l的普通方程; (2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值. 2.(2019屆廣東珠海9月摸底,22)在直角坐標(biāo)系xOy中,直線l過定點P(1,-)且與直線OP垂直.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ-2cos θ=0. (1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程; (2)設(shè)直線l與曲線C交于A、

2、B兩點,求的值. 3.(2018河南一模,22)在直角坐標(biāo)系xOy中,已知直線l1:(t為參數(shù)),l2:(t為參數(shù)),其中α∈0,,以原點O為極點,x軸非負(fù)半軸為極軸,取相同長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-4cos θ=0. (1)寫出l1,l2的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程; (2)設(shè)l1,l2分別與曲線C交于點A,B非坐標(biāo)原點,求|AB|的值. 4.(2018江西師大附中三模,22)在直角坐標(biāo)系xOy中,曲線C1:(θ為參數(shù)),在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l:ρsin(α-θ)=2

3、sin α.其中α為直線l的傾斜角(α≠0) (1)求曲線C1的普通方程和直線l的直角坐標(biāo)方程; (2)直線l與x軸的交點為M,與曲線C1的交點分別為A,B,求|MA|·|MB|的值. 5.(2018湖北5月沖刺,22)在直角坐標(biāo)系xOy中,直線l經(jīng)過點P(,0),傾斜角為,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sin θ. (1)求直線l的參數(shù)方程; (2)若A點在直線l上,B點在曲線C上,求|AB|的最小值. 6.(2018河南鄭州摸底)以平面直角坐標(biāo)系的原點O為極點,

4、x軸的正半軸為極軸建立極坐標(biāo)系,已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為4,,若直線l過點P,且傾斜角為,圓C以M為圓心,4為半徑. (1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程; (2)試判定直線l圓C的位置關(guān)系. 綜合提升組 7.(2018廣西欽州第三次質(zhì)檢,22)在平面直角坐標(biāo)系xOy中,直線l經(jīng)過點P(-3,0),其傾斜角為α,以原點O為極點,以x軸非負(fù)半軸為極軸,與坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ2-2ρcos θ-3=0. (1)若直線l與曲線C有公共點,求傾斜角α的取值范圍; (2)設(shè)M(x,y)為

5、曲線C上任意一點,求x+y的取值范圍. 8.(2018重慶西南大學(xué)附中模擬)已知平面直角坐標(biāo)系xOy中,過點P(-1,-2)的直線l的參數(shù)方程為(t為參數(shù)),l與y軸交于點A,以該直角坐標(biāo)系的原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρsin2θ=mcos θ(m>0),直線l與曲線C交于M、N兩點. (1)求曲線C的直角坐標(biāo)方程和點A的一個極坐標(biāo); (2)若=3,求實數(shù)m的值. 創(chuàng)新應(yīng)用組 9.(2018河北衡水中學(xué)押題一)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半

6、軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cos θ,直線l與圓C交于A,B兩點. (1)求圓C的直角坐標(biāo)方程及弦AB的長; (2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值. 10.(2018湖南長沙模擬二)在直角坐標(biāo)系xOy中,直線l的方程是x=2,曲線C的參數(shù)方程為(α為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (1)求直線l和曲線C的極坐標(biāo)方程; (2)射線OM:θ=β其中0<β≤與曲線C交于O,P兩點,與直線l交于點M,求的取值范圍. 課時規(guī)范練54 坐標(biāo)系與參數(shù)方程 1.解

7、 (1)曲線C的參數(shù)方程為(θ為參數(shù)).直線l的普通方程為2x+y-6=0. (2)曲線C上任意一點P(2cos θ,3sin θ)到直線l的距離為d=|4cos θ+3sin θ-6|, 則|PA|=|5sin(θ+α)-6|,其中α為銳角,且tan α=. 當(dāng)sin(θ+α)=-1時,|PA|取得最大值,最大值為. 當(dāng)sin(θ+α)=1時,|PA|取得最小值,最小值為. 2.解 (1)曲線C的直角坐標(biāo)方程為y2=2x, 直線l的參數(shù)方程為 (t為參數(shù)). (2)設(shè)點A、B對應(yīng)的參數(shù)分別為t1、t2, 將直線l與曲線C的方程聯(lián)立得t2-8t+4=0,(*) 可知t1,t

8、2是(*)式的兩根, 則 故t1、t2同正. ====2. 3.解 (1)l1,l2的極坐標(biāo)方程為θ1=α(ρ∈R),θ2=α+ (ρ∈R). 曲線C的極坐標(biāo)方程為ρ-4cos θ=0,即為ρ2-4ρcos θ=0, 利用ρ2=x2+y2,x=ρcos θ, 得曲線C的直角坐標(biāo)方程為(x-2)2+y2=4. (2)因為ρ1=4cos α,ρ2=4cosα+, 所以|AB|2=-2ρ1ρ2cos=16cos2α+cos2α+-cos αcosα+ =16cos2 α+(cos α-sin α)2-cos α(cos α-sin α)=8, 所以|AB|的值為2. 4.解

9、(1)曲線C1的普通方程為(x-1)2+y2=4, 直線l的直角坐標(biāo)方程為xsin α-ycos α=2sin α. (2)直線l與x軸的交點為M(2,0),直線l的參數(shù)方程可設(shè)為(t為參數(shù)),將直線l的參數(shù)方程代入圓C1的方程(x-1)2+y2=4, 得t2+2tcos α-3=0, 故|MA|·|MB|=|t1·t2|=3. 5.解 (1)直線l的參數(shù)方程為 (t為參數(shù)), 即(t為參數(shù)). (2)由 得x-y-3=0. 由ρ=2sin θ 得ρ2=2ρsin θ,即x2+y2-2y=0, 即x2+(y-1)2=1. 所以曲線C是以點Q(0,1)為圓心,1為半徑的

10、圓. 又點Q到直線l:x-y-3=0的距離為d==2. 故|AB|的最小值為2-1=1. 6.解 (1)直線l的參數(shù)方程為(t為參數(shù)), 則(t為參數(shù)),M點的直角坐標(biāo)為(0,4), 圓C的方程為x2+(y-4)2=16,且 代入得圓C極坐標(biāo)方程為ρ=8sin θ. (2)直線l的普通方程為x-y-5-=0, 圓心M到直線l的距離為d=>4, ∴直線l與圓C相離. 7.解 (1)將曲線C的極坐標(biāo)方程ρ2-2ρcos θ-3=0化為直角坐標(biāo)方程為x2+y2-2x-3=0,直線l的參數(shù)方程為(t為參數(shù)), 將參數(shù)方程代入x2+y2-2x-3=0,整理得t2-8tcos α+1

11、2=0. ∵直線l與曲線C有公共點, ∴Δ=64cos2α-48≥0, ∴cos α≥,或cos α≤-. ∵α∈[0,π), ∴α的取值范圍是0,∪,π. (2)曲線C的方程x2+y2-2x-3=0可化為(x-1)2+y2=4, 其參數(shù)方程為(θ為參數(shù)), ∵M(jìn)(x,y)為曲線上任意一點, ∴x+y=1+2cos θ+2sin θ=1+2sinθ+, ∴x+y的取值范圍是[1-2,1+2 ]. 8.解 (1)∵ρsin2θ=mcos θ,∴ρ2sin2θ=mρcos θ, ∴y2=mx(m>0), A點坐標(biāo)為(0,1), 其一個極坐標(biāo)為A1,π. (2)將代入y

12、2=mx,得t2-(4+m)t+m+4=0. ∵=3,∴t1=3t2. ∴∴m=. 9.解 (1)由ρ=4cosθ得ρ2=4ρcos θ, 所以x2+y2-4x=0,所以圓C的直角坐標(biāo)方程為(x-2)2+y2=4. 將直線l的參數(shù)方程代入圓C:(x-2)2+y2=4,并整理得t2+2t=0, 解得t1=0,t2=-2. 所以直線l被圓C截得的弦長為|t1-t2|=2. (2)直線l的普通方程為x-y-4=0. 圓C的參數(shù)方程為 (θ為參數(shù)), 可設(shè)圓C上的動點P(2+2cos θ,2sin θ), 則點P到直線l的距離d==2cosθ+-. 當(dāng)cosθ+=-1時,d取最大值,且d的最大值為2+. 所以S△ABP≤×2×(2+)=2+2. 即△ABP的面積的最大值為2+2. 10.解 (1)∵ ∴直線l的極坐標(biāo)方程是ρcos θ=2, 由消參數(shù)得x2+(y-2)2=4, ∴曲線C的極坐標(biāo)方程是 ρ=4sin θ. (2)將θ=β分別代入ρ=4sin θ,ρcos θ=2,得|OP|=4sin β,|OM|=, ∴sin 2β. ∵0<β≤,∴0<2β≤, ∴0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!