2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第二講 不等式選講課后訓(xùn)練 文
-
資源ID:105900482
資源大?。?span id="mzebxcnn0" class="font-tahoma">101KB
全文頁數(shù):2頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第二講 不等式選講課后訓(xùn)練 文
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題七 系列4選講 第二講 不等式選講課后訓(xùn)練 文
1.已知函數(shù)f(x)=|2x-1|,x∈R.
(1)解不等式f(x)<|x|+1;
(2)若對x,y∈R,有|x-y-1|≤,|2y+1|≤,求證:f(x)<1.
解析:(1)∵f(x)<|x|+1,∴|2x-1|<|x|+1,
即或
或
得≤x<2或0<x<或無解.
故不等式f(x)<|x|+1的解集為{x|0<x<2}.
(2)證明:f(x)=|2x-1|=|2(x-y-1)+(2y+1)|≤|2(x-y-1)|+|2y+1|=2|x-y-1|+|2y+1|≤2×+=<1.
2.(2018·高考全國卷Ⅲ)設(shè)函數(shù)?(x)=|2x+1|+|x-1|.
(1)畫出y=?(x)的圖象;
(2)當(dāng)x∈[0,+∞)時(shí),?(x)≤ax+b,求a+b的最小值.
解析:(1)?(x)=
y=?(x)的圖象如圖所示.
(2)由(1)知,y=?(x)的圖象與y軸交點(diǎn)的縱坐標(biāo)為2,且各部分所在直線斜率的最大值為3,故當(dāng)且僅當(dāng)a≥3且b≥2時(shí),?(x)≤ax+b在[0,+∞)成立,因此a+b的最小值為5.
3.(2018·福州四校聯(lián)考)(1)求不等式-2<|x-1|-|x+2|<0的解集;
(2)設(shè)a,b均為正數(shù),h=max,證明:h≥2.
解析:(1)記f(x)=|x-1|-|x+2|=
由-2<-2x-1<0,解得-<x<,則不等式的解集為(-,).
(2)證明:h≥,h≥,h≥,
h3≥≥=8,當(dāng)且僅當(dāng)a=b時(shí)取等號,∴h≥2.
4.(2018·石家莊模擬)已知函數(shù)f(x)=|ax-1|-(a-2)x.
(1)當(dāng)a=3時(shí),求不等式f(x)>0的解集;
(2)若函數(shù)f(x)的圖象與x軸沒有交點(diǎn),求實(shí)數(shù)a的取值范圍.
解析:(1)當(dāng)a=3時(shí),不等式可化為|3x-1|-x>0,即|3x-1|>x,
∴3x-1<-x或3x-1>x,解得x>或x<,
故f(x)>0的解集為{x|x<或x>}.
(2)當(dāng)a>0時(shí),f(x)=要使函數(shù)f(x)的圖象與x軸無交點(diǎn),
只需得1≤a<2;
當(dāng)a=0時(shí),f(x)=2x+1,函數(shù)f(x)的圖象與x軸有交點(diǎn);
當(dāng)a<0時(shí),f(x)=要使函數(shù)f(x)的圖象與x軸無交點(diǎn),
只需此時(shí)無解.
綜上可知,當(dāng)1≤a<2時(shí),函數(shù)f(x)的圖象與x軸無交點(diǎn).