《七年級升八年級數(shù)學(xué) 暑期銜接班講義 11.2 與三角形有關(guān)的角度求和 新人教版》由會員分享,可在線閱讀,更多相關(guān)《七年級升八年級數(shù)學(xué) 暑期銜接班講義 11.2 與三角形有關(guān)的角度求和 新人教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、七年級升八年級數(shù)學(xué) 暑期銜接班講義 11.2 與三角形有關(guān)的角度求和 新人教版
【知識要點】
1.與三角形有關(guān)的四個基本圖及其演變;
2.星形圖形的角度求和.
【新知講授】
例一、如圖,直接寫出∠D與∠A、∠B、∠C之間的數(shù)量關(guān)系.
箭形: ;蝶形: ;四邊形: .
請給出“箭形”基本圖結(jié)論的證明(你能想出幾種不同的方法):
例二、三角形兩條內(nèi)、外角平分線的夾角與第三個內(nèi)角之間的關(guān)系
1.如圖,△ABC中,∠ABC、∠
2、ACB的平分線交于點I,探求∠I與∠A的關(guān)系;
2.如圖,在△ABC中,∠ABC、∠ACB的外角∠ACD的平分線交于點I,探求∠I與∠A的關(guān)系;
3.如圖,在△ABC中,∠ABC的外角∠CBD、∠ACB的外角∠BCE的平分線交于點I,探求∠I與∠A的關(guān)系.
例三、“箭形”、“蝶形”、“四邊形”兩條內(nèi)、外角平分線的夾角與另兩個內(nèi)角之間的關(guān)系
發(fā)散探索一:如圖,∠ABD、∠ACD的平分線交于點I,探索∠I與∠A、∠D之間的數(shù)量關(guān)系.
發(fā)散探索二:如圖,∠ABD的平分線與∠ACD的鄰補角
3、∠ACE的平分線所在的直線交于點I,探索∠I與∠A、∠D之間的數(shù)量關(guān)系.
發(fā)散探索三:如圖,∠ABD的鄰補角∠DBE平分線與∠ACD的鄰補角∠DCF的平分線交于點I,探索∠I與∠A、∠D之間的數(shù)量關(guān)系.
例四、如圖,在△ABC中, BP、BQ三等分∠ABC,CP、CQ三等分∠ACB.
(1)若∠A=60°,直接寫出:∠BPC的度數(shù)為 ,∠BQC的度數(shù)為 ;
(2)連接PQ并延長交BC于點D,若∠BQD=63°,∠CQD=80°,求△ABC三個內(nèi)角的度數(shù).
4、
例五、如圖,BD、CE交于點M,OB平分∠ABD,OC平分∠ACE,OD平分∠ADB,OE平分∠AEC,
求證:∠BOE=∠COD;
【題型訓(xùn)練】
1.如圖,求∠A+∠B+∠C+∠D+∠E的度數(shù)和.
2.如圖,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)和.
3.如圖,已知∠1=60°,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)和.
發(fā)散探索:①如圖,∠A+∠B+∠C+∠D+∠E= ;
②如圖,∠A+∠B+∠C+∠D+∠E+∠F+∠G=
5、 ;
③如圖,∠A+∠B+∠C+∠D+∠E+∠F= .
④如圖,∠A+∠B+∠C+∠D+∠E+∠F= .
⑤如圖,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;
⑥如圖,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;
⑦如圖,BC⊥EF,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
第 三 講 作 業(yè)
1.如圖,B島在A島的南偏西30°,A島在C島的北偏西35°,B島在C島的北偏西78°,則從B島看A、C兩島的視角
6、∠ABC的度數(shù)為( ).
(A)65° (B)72° (C)75° (D)78°
2.如圖,D、E分別是AB、AC上一點,BE、CD相交于點F,∠ACD=30°,∠ABE=20°,∠BDC+∠BEC=170°則∠A等于( ).
(A)50° (B)85° (C)70° (D)60°
3.一副三角板,如圖所示疊放在一起,則圖中∠的度數(shù)是( ).
(A)75° (B)60° (C)65° (
7、D)55°
4.如圖,在△ABC中,∠BAC=36°,∠C=72°,BD平分∠ABC交AC于點D,AF∥BC,交BD的延長線于點F,AE平分∠CAF交DF于E點.我們定義:在一個三角形中,有一個角是36°,其余兩個角均為72°的三角形和有一個角是108°,其余兩個角均為36°的三角形均被稱作“黃金三角形”,則這個圖中黃金三角形共有( ).
(A)8個 (B)7個 (C)6個 (D)5個
5.如圖,∠A=35°,∠B=∠C=90°,則∠D的度數(shù)是( ).
(A)35° (B
8、)45° (C)55° (D)65°
6.如圖,已知∠A+∠BCD=140°,BO平分∠ABC,DO平分∠ADC,則∠BOD=( ).
(A)40° (B)60° (C)70° (D)80°
7.如圖,一個直角三角形紙片,剪去直角后,得到了一個四邊形,則∠1+∠2= .
8.如圖,在△ABC中,∠A=80°,點D為邊BC延長線上的一點,∠ACD=150°,則∠B= .
9.將一副直角三角板如上
9、圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為 .
10.一副三角板疊在一起如圖放置,最小銳角的頂點D恰好放在等腰直角三角板的斜邊AB上,BC與DE交于點M.若∠ADF=100°,則∠BMD為 .
11.如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠AEC=______.
12.如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點A1,∠A1BC的平分線與∠A1CD的平分線交于點A2,…,如此下去,∠An﹣1BC的平分線與∠An﹣1CD的平分線交于點.設(shè)∠A=θ.則∠A1= ;= ?。?
13.已知:如圖1,在△ABC中,∠ABC、∠ACB的角平分線交于點O,則
;如圖2,在△ABC中,∠ABC、∠ACB的兩條三等分角線分別對應(yīng)交于點、,則,;……;根據(jù)以上閱讀理解,當(dāng)?shù)确纸菚r,內(nèi)部有個交點,你以猜想=( ).
(A)
(B)
(C)
(D)
14.在△ABC中,∠C=∠ABC=2∠A,BD是AC邊上的高,BE平分∠ABC,求∠DBE度數(shù).