秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版

上傳人:xt****7 文檔編號:106013160 上傳時間:2022-06-13 格式:DOC 頁數(shù):10 大小:44.50KB
收藏 版權(quán)申訴 舉報 下載
中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版_第1頁
第1頁 / 共10頁
中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版_第2頁
第2頁 / 共10頁
中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、中考數(shù)學(xué)專題復(fù)習(xí)過關(guān)集訓(xùn) 第四單元 三角形 第4課時 全等三角形練習(xí) 新人教版 基礎(chǔ)達(dá)標(biāo)訓(xùn)練 1. 如圖,在△ABC和△DEF中,AB=DE,∠B=∠DEF,補(bǔ)充下列哪一條件后,能應(yīng)用“SAS”判定△ABC≌△DEF(  ) A. ∠A=∠D B. ∠ACB=∠DFE C. AC=DF D. BE=CF 第1題圖 2. 如圖,△ABC≌△BAD,A和B,C和D是對應(yīng)頂點,如果AB=5,BD=6,AD=4,那么BC等于(  ) A. 4 B. 6 C. 5 D. 無法確定

2、 第2題圖 3. 已知△ABC與△DEF全等,∠A=∠D=70°,∠B=60°,則∠F的度數(shù)是(  ) A. 50° B. 60° C. 60°或50° D. 70°或50° 4. (xx泰安)如圖,在△PAB中,PA=PB,M,N,K分別是邊PA,PB,AB上的點,且AM=BK,BN=AK,若∠MKN=44°,則∠P的度數(shù)為(  ) A. 44° B. 66° C. 88° D. 92° 第4題圖 5. 如圖,在△ABC中,點D在BC上,且AB=AD,AC=AE,∠BAD=∠CAE,DE

3、=12,CD=4,則BD=________. 第5題圖 6. (xx南京)如圖,四邊形ABCD的對角線AC,BD相交于點O,△ABO≌△ADO.下列結(jié)論:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中所有正確結(jié)論的序號是________. 第6題圖 7. (xx濟(jì)寧)如圖,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D,E,AD,CE交于點H,請你添加一個適當(dāng)條件:__________,使△AEH≌△CEB. 第7題圖 8. (xx郴州)已知△ABC中,∠ABC=∠ACB,點D、E分別為邊AB、AC的中點.求證:BE=CD.  第8題圖

4、 9. (xx昆明)如圖,點D是AB上一點,DF交AC于點E,DE=FE,F(xiàn)C∥AB.求證:AE=CE. 第9題圖 10. (xx河北改編)如圖,點B,F(xiàn),C,E在直線l上(F,C之間不能直接測量),點A,D在l異側(cè),測得AB=DE,AC=DF,添加一個條件:________,使得△ABC≌△DEF,并證明. 第10題圖 11. (xx蘇州)如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O. (1)求證:△AEC≌△BED; (2)若∠1=42°,求∠BDE的度數(shù). 第11題圖

5、 12. (xx齊齊哈爾改編)如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC.E,F(xiàn)分別是BG,AC的中點.不添加字母及輔助線,寫出圖中的全等三角形,并選其中一對證明. 第12題圖  能力提升拓展 1. 如圖,已知AB=12,AB⊥BC于點B,AB⊥AD于點A,AD=5,BC=10,點E是CD的中點,則AE的長為(  ) A. 6 B. C. 5 D. 第1題圖 2. (xx泰州)如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等

6、三角形的對數(shù)是(  ) A. 1對 B. 2對 C. 3對 D. 4對   第2題圖 3. (xx荊門)已知:如圖,在Rt△ACB中,∠ACB=90°,點D是AB的中點,點E是CD的中點,過點C作CF∥AB交AE的延長線于點F. (1)求證:△ADE≌△FCE; (2)若∠DCF=120°,DE=2,求BC的長. 第3題圖 4. (xx常州)如圖,已知在四邊形ABCD中,點E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求證:AC=CD; (2)若AC=AE,求∠DEC的度數(shù).

7、 第4題圖 答案 基礎(chǔ)達(dá)標(biāo)訓(xùn)練 1. D 【解析】∠B的兩邊是AB、BC,∠DEF的兩邊是DE、EF,而BC=BE+EC,EF=EC+CF,要使BC=EF,則BE=CF. 2. A 【解析】∵△ABC≌△BAD,∴BC=AD=4. 3. C 【解析】當(dāng)△ABC≌△DFE時,∠A=∠D=70°,∠F=∠B=60°;當(dāng)△ABC≌△DEF時,∠A=∠D=70°,∠B=∠E=60°,則∠F=∠C=180°-70°-60°=50°,綜上所述,∠F的度數(shù)為60°或50°. 4. D 【解析】∵PA=PB,∴∠A=∠B,∵AM=BK,AK=BN,∴△AMK≌△BKN(SAS),∴

8、∠BKN=∠AMK,∵∠MKB=∠MKN+∠BKN=∠AMK+∠A,∴∠A=∠MKN=44°,∴∠P=180°-∠A-∠B=180°-2∠A=92°. 5. 8 【解析】∵∠BAD=∠CAE,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE=12,∵CD=4,∴BD=BC-DC=12-4=8. 6. ①②③ 【解析】∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,∴AC⊥BD,故①正確;∵△ABO≌△ADO,∴BO=OD,由①知AC⊥BD,∴CB=CD,故②正確;∵△ABO≌△ADO,∴AB=AD,在△ABC和△ADC中,AB=AD,CB=C

9、D,AC=AC,∴ △ABC≌△ADC(SSS),故③正確;∵由已知不能得到DA和DC相等,故④不正確.綜上所述,結(jié)論正確的序號是①②③. 7. AH=CB(或EH=EB或AE=CE)(只要符合要求即可)  【解析】∵AD⊥BC,CE⊥AB,垂足分別為點D、E,∴∠ADC=∠BEC=∠AEC=90°,∴∠EAH+∠AHE=90°,∠DCH+∠CHD=90°,又∵∠AHE=∠CHD,∴∠EAH=∠BCE,∴根據(jù)AAS添加AH=CB或EH=EB;根據(jù)ASA添加AE=CE即可證得△AEH≌△CEB.故答案填:AH=CB或EH=EB或AE=CE均可. 8. 證明:∵∠ABC=∠ACB, ∴A

10、B=AC, ∵D、E分別為邊AB、AC的中點, ∴BD=AB,CE=AC, ∴BD=CE, 又∵∠ABC=∠ACB,BC=CB, ∴△CBE≌△BCD(SAS), ∴BE=CD. 9. 證明:∵FC∥AB, ∴∠A=∠ECF, 在△ADE和△CFE中, , ∴△ADE≌△CFE(AAS), ∴AE=CE. 10. 解:BF=EC或∠A=∠D. 證明:(以下兩種全等證明任選其一即可.) ①當(dāng)BF=EC時, 則BF+FC=FC+EC,即BC=EF, 在△ABC和△DEF中, , ∴△ABC≌△DEF(SSS). ②當(dāng)∠A=∠D時, 在△ABC和△DEF中,

11、 , ∴△ABC≌△DEF(SAS). 11. (1)證明:∵AE和BD相交于點O, ∴∠AOD=∠BOE, 在△AOD和△BOE中,∠A=∠B, ∴∠BEO=∠2, 又∵∠1=∠2, ∴∠1=∠BEO, ∴∠AEC=∠BED, 在△AEC和△BED中, , ∴△AEC≌△BED(ASA); (2)解:由(1)得△AEC≌△BED, ∴EC=ED,∠C=∠BDE, ∴∠C=∠EDC=(180°-∠1)=(180°-42°)=69°, ∴∠BDE=∠C=69°. 12. 解:△BDG≌△ADC,△BDE≌△ADF, △EDG≌△FDC. 證明:(以下三種全等

12、證明任選其一即可.) ①∵AD⊥BC, ∴∠ADB=∠ADC=90°, 在△BDG與△ADC中, , ∴△BDG≌△ADC(SAS). ②由①中△BDG≌△ADC可得BG=AC, ∵∠GDB=∠ADC=90°,E,F(xiàn)分別是BG,AC的中點, ∴BE=DE=EG=BG, AF=DF=CF=AC, ∴BE=AF,DE=DF, 在△BDE和△ADF中, , ∴△BDE≌△ADF(SSS). ③由②得DE=DF=EG=FC, 由①得DG=DC, 在△EDG和△FDC中, , ∴△EDG≌△FDC(SSS). 能力提升拓展 1. B 【解析】如解圖,延長AE交BC

13、于F,∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠D=∠C,∵點E是CD的中點,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌ △FCE(ASA),∴AE=FE,CF=AD=5,∴BF=BC-CF=5,在Rt△ABF中,AF===13,∴AE=AF=. 第1題解圖 2. D 【解析】∵AB=AC,D為BC中點,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌ △ACD(SSS);∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS);在△BOD和△COD中,,∴△BOD≌△COD(SAS);由△B

14、OD≌△COD可知OB=OC,在△AOC和△AOB中,,∴ △AOC≌△AOB(SSS).綜上所述,共有4對全等的三角形. 3. (1)證明:∵點E 是CD的中點, ∴DE=CE, ∵AB∥CF, ∴∠BAF=∠AFC, 在△ADE與△FCE中, , ∴△ADE≌△FCE(AAS); (2)解:由(1)知CD=2DE, ∴CD=4, ∵CF∥AB,∠DCF=120°, ∴∠BDC=60°, 在Rt△ABC中,D為AB的中點, ∴CD=AD=BD, ∴△BCD是等邊三角形, ∴BC=DC=4. 4.(1)證明:∵∠BCE=∠ACD=90°,∠BCE=∠ACB+∠ACE,∠ACD=∠ACE+∠DCE, ∴∠ACB=∠DCE, 在△ABC和△DEC中, , ∴△ABC≌△DEC(AAS), ∴AC=CD; (2)解:由(1)知AC=CD, 又∵∠ACD=90°, ∴∠CAD=45°, ∵AC=AE, ∴∠ACE=∠AEC=×(180°-45°)=67.5°. ∴∠DEC=180°-67.5°=112.5°.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!