《山東省德州市2022年中考數(shù)學(xué)同步復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 反比例函數(shù)訓(xùn)練》由會員分享,可在線閱讀,更多相關(guān)《山東省德州市2022年中考數(shù)學(xué)同步復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 反比例函數(shù)訓(xùn)練(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、山東省德州市2022年中考數(shù)學(xué)同步復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 反比例函數(shù)訓(xùn)練
1.(xx·湘西州中考)反比例函數(shù)y=(k>0),當(dāng)x<0時,圖象在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.(xx·哈爾濱中考)已知反比例函數(shù)y=的圖象經(jīng)過點(1,1),則k的值為( )
A.-1 B.0
C.1 D.2
3.(2019·易錯題)已知點A(x1,3),B(x2,6)都在反比例函數(shù)y=-的圖象上,則下列關(guān)系式一定正確的是( )
A.x1<x2<0
B.
2、x1<0<x2
C.x2<x1<0
D.x2<0<x1
4.(2019·易錯題)一次函數(shù)y=ax+b和反比例函數(shù)y=在同一直角坐標(biāo)系中的大致圖象是( )
5.(xx·玉林中考改編)如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C在反比例函數(shù)y=(x>0)的圖象上,若AC⊥x軸,BC⊥y軸,且AC=BC,則AB等于( )
A. B.2 C.2 D.4
6.(xx·宜賓中考)已知:點P(m,n)在直線y=-x+2上,也在雙曲線y=-上,則m2+n2的值為______.
7.(xx·宿遷中考)如圖,在平面直角
3、坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象與正比例函數(shù)y=kx,y=x(k>1)的圖象分別交于點A,B,若∠AOB=45°,則△AOB的面積是______.
8.(xx·常德中考)如圖,已知反比例函數(shù)y=的圖象經(jīng)過點A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點C(x,y)也在反比例函數(shù)y=的圖象上,當(dāng)-3≤x≤-1時,求函數(shù)值y的取值范圍.
9.(xx·天津中考)若點A(x1,-6),B(x2,-2),C(x3,2)在反比例函數(shù)y=的圖象上,則x1,x2,x3的大小關(guān)系是( )
A.x1
4、B.x2
5、例函數(shù)y=(x>0)與y=-(x>0)的圖象交于A,B兩點,若C為y軸上任意一點,連接AC,BC,則△ABC的面積為________.
13.(xx·攀枝花中考)如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點D為斜邊AC的中點,連接DB并延長交y軸于點E,若△BCE的面積為4,則k=________.
14.(xx·達州中考)矩形AOBC中,OB=4,OA=3.分別以O(shè)B,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E.
(1)當(dāng)點F運動到邊
6、BC的中點時,求點E的坐標(biāo);
(2)連接EF,求∠EFC的正切值;
(3)如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的表達式.
15.(xx·郴州中考)參照學(xué)習(xí)函數(shù)的過程與方法,探究函數(shù)y=(x≠0)的圖象與性質(zhì).
因為y==1-,即y=-+1,所以我們對比函數(shù)y=-來探究.
列表:
描點:在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以y=相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點,如圖所示.
(1)請把y軸左邊各點和右邊各點,分別用一條光滑曲線順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)x
7、<0時,y隨x的增大而____________;(填“增大”或“減小”)
②y=的圖象是由y=-的圖象向________平移________個單位而得到;
③圖象關(guān)于點________中心對稱(填點的坐標(biāo));
(3)設(shè)A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點,且x1+x2=0,試求y1+y2+3的值.
參考答案
【基礎(chǔ)訓(xùn)練】
1.C 2.D 3.A 4.A 5.B
6.6 7.2
8.解:(1)∵△AOB的面積為2,∴k=4,
∴反比例函數(shù)的表達式為y=.
∵點A(4,m)在反比例函數(shù)y=的圖象上,∴m==1.
(2)∵當(dāng)x=-3時
8、,y=-;
當(dāng)x=-1時,y=-4.
又∵反比例函數(shù)y=在x<0時,y隨x的增大而減小,
∴當(dāng)-3≤x≤-1時,y的取值范圍為-4≤y≤-.
【拔高訓(xùn)練】
9.B 10.C
11.(-2,0)或(-6,0) 12.5 13.8
14.解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3).
∵F是BC的中點,∴F(4,).
∵點F在反比例函數(shù)y=的圖象上,∴k=4×=6,
∴反比例函數(shù)的表達式為y=.
∵E點的縱坐標(biāo)為3,∴E(2,3).
(2)∵F點的橫坐標(biāo)為4,∴F(4,),
∴CF=BC-BF=3-=.
∵E點的縱坐標(biāo)為3,∴E(,3),
∴CE=AC
9、-AE=4-=.
在Rt△CEF中,tan∠EFC==.
(3)由(2)知,CF=,CE=,=.
如圖,過點E作EH⊥OB于點H,
∴EH=OA=3,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°.
由折疊知EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF.
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
∴==,
∴=,∴BG=.
在Rt△FBG中,F(xiàn)G2-BF2=BG2,
∴()2-()2=,
解得k=,∴反比例函數(shù)的表達式為y=.
【培優(yōu)訓(xùn)練】
15.解:(1)連線如圖.
(2)①增大?、谏稀??、?0,1)
(3)y1+y2+3=1-+1-+3=5-2(+)
=5-2·.
∵x1+x2=0,∴y1+y2+3=5-2×0=5.