(文理通用)2022屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題1 集合、常用邏輯用語等 第3講 不等式及線性規(guī)劃練習(xí)
《(文理通用)2022屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題1 集合、常用邏輯用語等 第3講 不等式及線性規(guī)劃練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《(文理通用)2022屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題1 集合、常用邏輯用語等 第3講 不等式及線性規(guī)劃練習(xí)(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(文理通用)2022屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題1 集合、常用邏輯用語等 第3講 不等式及線性規(guī)劃練習(xí)
A組
1.若a>b>0,c
2、(當(dāng)且僅當(dāng)x=y(tǒng)時取等號)逐個分析,注意基本不等式的應(yīng)用條件及取等號的條件. 當(dāng)x>0時,x2+≥2·x·=x, 所以lg(x2+)≥lgx(x>0),故選項A不正確; 運用基本不等式時需保證一正二定三相等, 而當(dāng)x≠kπ,k∈Z時,sinx的正負不定,故選項B不正確; 由基本不等式可知,選項C正確; 當(dāng)x=0時,有=1,故選項D不正確. 3.關(guān)于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1, x2),且x2-x1=15,則a等于( A ) A. B. C. D. [解析] 由x2-2ax-8a2<0,得(x+2a)(x-4a)<0,
3、因a>0,所以不等式的解集為(-2a,4a),即x2=4a,x1=-2a,由x2-x1=15,得4a-(-2a)=15,解得a=.
4.(2017·長春一模)已知一元二次不等式f(x)<0的解集為{x|x<-1或x>},則f(ex)>0的解集為( D )
A.{x|x<-1或x>-ln3}
B.{x|-1
4、 C ) A.4 B.9 C.10 D.12 [解析] 作出不等式組所表示的平面區(qū)域如圖中陰影部分所示,設(shè)P(x,y)為平面區(qū)域內(nèi)任意一點,則x2+y2表示|OP|2.顯然,當(dāng)點P與點A重合時,|OP|2取得最大值.由,解得,故A(3,-1).所以x2+y2的最大值為32+(-1)2=10.故選C. 6.(文)若實數(shù)x、y滿足不等式組則w=的取值范圍是( D ) A.[-1,] B.[-,] C.[-,+∞) D.[-,1) [解析] 作出不等式組表示的平面區(qū)域如圖所示.據(jù)題意,即求點M(x,y)與點P(-1,1)連線斜率的取值范圍. 由圖可知wmi
5、n==-,wmax<1, ∴w∈[-,1). (理)已知O是坐標(biāo)原點,點A(-1,2),若點M(x,y)為平面區(qū)域上的一個動點,則·的取值范圍是( D ) A.[-1,0] B.[0,1] C.[1,3] D.[1,4] [解析] 作出點M(x,y)滿足的平面區(qū)域,如圖陰影部分所示,易知當(dāng)點M為點C(0,2)時,·取得最大值,即為(-1)×0+2×2=4,當(dāng)點M為點B(1,1)時,·取得最小值,即為(-1)×1+2×1=1,所以·的取值范圍為[1,4],故選D. 7.某企業(yè)生產(chǎn)甲、乙兩種新產(chǎn)品均需用A,B兩種原料.已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表
6、所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( D ) 甲 乙 原料限額 A(噸) 3 2 12 B(噸) 1 2 8 A.12萬元 B.16萬元 C.17萬元 D.18萬元 [解析] 設(shè)企業(yè)每天生產(chǎn)甲產(chǎn)品x噸、乙產(chǎn)品y噸,每天獲得的利潤為z萬元,則有z=3x+4y,由題意得x,y滿足:不等式組表示的可行域是以O(shè)(0,0), A(4,0),B(2,3),C(0,4)為頂點的四邊形及其內(nèi)部.根據(jù)線性規(guī)劃的有關(guān)知識,知當(dāng)直線3x+4y-z=0過點B(2,3)時,z取最大值18,故該企業(yè)每天可獲得最大利潤為18萬
7、元. 8.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(log2a)+f(loga)≤2f(1),則a的取值范圍是( C ) A.[1,2] B.(0,] C.[,2] D.(0,2] [解析] 因為loga=-log2a,所以f(log2a)+f(loga)=f(log2a)+f(-log2a)=2f(log2a),原不等式變?yōu)?f(log2a)≤2f(1),即f(log2a)≤f(1),又因為f(x)是定義在R上的偶函數(shù),且在[0,+∞)上遞增,所以|log2a|≤1,即-1≤log2a≤1,解得≤a≤2,故選C. 9.已知a>0,
8、x,y滿足約束條件若z=2x+y的最小值為1,則a=( B )
A. B.
C.1 D.2
[解析] 畫出可行域,如圖所示,
由
得A(1,-2a),則直線y=z-2x過點A(1,-2a)時,z=2x+y取最小值1,故2×1-2a=1,解得a=.
10.已知x∈(0,+∞)時,不等式9x-m·3x+m+1>0恒成立,則m的取值范圍是( C )
A.2-2
9、有Δ=(-m)2-4(m+1)<0或 解得m<2+2. 11.已知AC,BD為圓O:x2+y2=4的兩條互相垂直的弦,且垂足為M(1,),則四邊形ABCD面積的最大值為( A ) A.5 B.10 C.15 D.20 [解析] 如圖,作OP⊥AC于P,OQ⊥BD于Q,則OP2+OQ2=OM2=3,∴AC2+BD2=4(4-OP2)+4(4-OQ2)=20.又AC2+BD2≥2AC·BD,則AC·BD≤10, ∴S四邊形ABCD=AC·BD≤×10=5, 當(dāng)且僅當(dāng)AC=BD=時等號成立. 12.函數(shù)f(x)=若f(x0)≤,則x0的取值范圍是( C ) A.
10、(log2,) B.(0,log2]∪[,+∞)
C.[0,log2]∪[,2] D.(log2,1)∪[,2]
[解析] ①當(dāng)0≤x0<1時,2x0≤,x0≤log2,
∴0≤x0≤log2.
②當(dāng)1≤x0≤2時,4-2x0≤,x0≥,
∴≤x0≤2,故選C.
13.(2018·衡水中學(xué)高三調(diào)研)已知f(x)是R上的減函數(shù),A(3,-1),B(0,1)是其圖象上兩點,則不等式|f(1+lnx)|<1的解集是(,e2).
[解析] ∵|f(1+lnx)|<1,∴-1 11、+lnx<3,∴-1 12、已知函數(shù)f(x)=若對任意的x∈R,不等式f(x)≤m2-m恒成立,則實數(shù)m的取值范圍是(-∞,-)∪[1,+∞).
[解析] 對于函數(shù)
f(x)=
當(dāng)x≤1時,f(x)=-(x-)2+≤;
當(dāng)x>1時,f(x)=logx<0.
則函數(shù)f(x)的最大值為.
則要使不等式f(x)≤m2-m恒成立,
則m2-m≥恒成立,即m≤-或m≥1.
B組
1.(2018·山東菏澤一模)已知直線ax+by+c-1=0(b,c>0)經(jīng)過圓x2+y2-2y-5=0的圓心,則+的最小值是( A )
A.9 B.8
C.4 D.2
[解析] 圓x2+y2-2y-5=0化成標(biāo)準(zhǔn)方程, 13、得x2+(y-1)2=6,
所以圓心為C(0,1).
因為直線ax+by+c-1=0經(jīng)過圓心C,
所以a×0+b×1+c-1=0,即b+c=1.
因此+=(b+c)(+)=++5.
因為b,c>0,
所以+≥2=4.
當(dāng)且僅當(dāng)=時等號成立.
由此可得b=2c,且b+c=1,即b=,
c=時,+取得最小值9.
2.(2018·天津二模)已知函數(shù)f(x)=,則不等式f(1-x2)>f(2x)的解集是( D )
A.{x|-1 14、≤1時,函數(shù)f(x)為減函數(shù),則由f(1-x2)>f(2x)可得或解得x<-1-或-1 15、18·德州模擬)若a=,b=,c=,則( C )
A.a(chǎn)1,所以b>a,
===log2532>1,
所以a>c,
故b>a>c.
5.已知正項等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項am,an使得=4a1,則+的最小值為( A )
A. B.
C. D.不存在
[解析] 由an>0,a7=a6+2a5,設(shè){an}的公比為q,
則a6q=a6+,所以q2-q-2=0.
因為q>0,所以q=2,
因為=4a1,所以a·qm+n 16、-2=16a,
所以m+n-2=4,
所以m+n=6,
所以+=(m+n)(+)=(5++)≥(5+2)=,等號在=,即n=2m=4時成立.
6.若變量x,y滿足則點P(2x-y,x+y)表示區(qū)域的面積為( D )
A. B.
C. D.1
[解析] 令2x-y=a,x+y=b,
解得
代入x,y的關(guān)系式得
畫出不等式組表示的平面區(qū)域如圖.
易得陰影區(qū)域面積S=×2×1=1.
7.(2018·臨沂模擬)若不等式組表示的平面區(qū)域是一個三角形,則a的取值范圍是( D )
A.[,+∞) B.(0,1]
C.[1,) D.(0,1]∪[,+∞)
17、[解析] 不等式組表示區(qū)域如圖.
由圖可知,0},則f(10x)>0的解集為 18、{x|x<-lg_2}.
[解析] 由題意知,一元二次不等式f(x)<0的解集為{x|x<-1或x>},因為f(10x)>0,所以-1<10x<,即x 19、m2-2am-5對所有x∈[-1,1]、a∈[-1,1]恒成立,則實數(shù)m的取值范圍是[-1,1].
[解析] ∵f(x)是定義在[-1,1]上的奇函數(shù),
∴當(dāng)x1、x2∈[-1,1]且x1+x2≠0時,
>0等價于>0,
∴f(x)在[-1,1]上單調(diào)遞增.
∵f(1)=2,∴f(x)min=f(-1)=-f(1)=-2.
要使f(x)≥m2-2am-5對所有x∈[-1,1],a∈[-1,1]恒成立,
即-2≥m2-2am-5對所有a∈[-1,1]恒成立,
∴m2-2am-3≤0,設(shè)g(a)=m2-2am-3,
則即∴-1≤m≤1.
∴實數(shù)m的取值范圍是[-1,1].
1 20、2.(2017·天津卷,16)電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇播放
時長(分鐘)
廣告播放時
長(分鐘)
收視人次(萬)
甲
70
5
60
乙
60
5
25
已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(1)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問電視臺每 21、周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?
[解析] (1)由已知x,y滿足的數(shù)學(xué)關(guān)系式為
即
該二元一次不等式組所表示的平面區(qū)域為圖①中的陰影部分中的整數(shù)點.
(2)設(shè)總收視人次為z萬,則目標(biāo)函數(shù)為z=60x+25y.
考慮z=60x+25y,將它變形為y=-x+,這是斜率為-,隨z變化的一族平行直線.為直線在y軸上的截距,
當(dāng)取得最大值時,z的值就最大.
又因為x,y滿足約束條件,所以由圖②可知,當(dāng)直線z=60x+25y經(jīng)過可行域上的點M時,截距最大,即z最大.
解方程組
得
則點M的坐標(biāo)為(6,3).
所以,電視臺每周播出甲連續(xù)劇6次、乙連續(xù)劇3次時,才能使總收視人次最多.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第7課時圖形的位置練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第1課時圖形的認識與測量1平面圖形的認識練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊2百分數(shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊1負數(shù)第1課時負數(shù)的初步認識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)上冊期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊易錯清單十二課件新人教版
- 標(biāo)準(zhǔn)工時講義
- 2021年一年級語文上冊第六單元知識要點習(xí)題課件新人教版
- 2022春一年級語文下冊課文5識字測評習(xí)題課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時數(shù)學(xué)思考1練習(xí)課件新人教版