秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2020年高考數(shù)學(xué)一輪經(jīng)典例題 不等式證明 理

上傳人:艷*** 文檔編號:110341937 上傳時(shí)間:2022-06-18 格式:DOC 頁數(shù):14 大?。?97KB
收藏 版權(quán)申訴 舉報(bào) 下載
2020年高考數(shù)學(xué)一輪經(jīng)典例題 不等式證明 理_第1頁
第1頁 / 共14頁
2020年高考數(shù)學(xué)一輪經(jīng)典例題 不等式證明 理_第2頁
第2頁 / 共14頁
2020年高考數(shù)學(xué)一輪經(jīng)典例題 不等式證明 理_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年高考數(shù)學(xué)一輪經(jīng)典例題 不等式證明 理》由會員分享,可在線閱讀,更多相關(guān)《2020年高考數(shù)學(xué)一輪經(jīng)典例題 不等式證明 理(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2020年高考數(shù)學(xué)(理)一輪經(jīng)典例題——不等式證明 典型例題一 例1 若,證明( 且). 分析1 用作差法來證明.需分為和兩種情況,去掉絕對值符號,然后比較法證明. 解法1 (1)當(dāng)時(shí), 因?yàn)?, 所以 . (2)當(dāng)時(shí), 因?yàn)? 所以 . 綜合(1)(2)知. 分析2 直接作差,然后用對數(shù)的性質(zhì)來去絕對值符號. 解法2 作差比較法. 因?yàn)? , 所以. 說明:解法一用分類相當(dāng)于增設(shè)了已知條件,便于在變形中脫去絕對值符號;解法二用對數(shù)性質(zhì)(換底公式)也能達(dá)到同樣的目的,且不必分而治之,其解法自然簡捷、明

2、快. 典型例題二 例2 設(shè),求證: 分析:發(fā)現(xiàn)作差后變形、判斷符號較為困難.考慮到兩邊都是正數(shù),可以作商,判斷比值與1的大小關(guān)系,從而證明不等式. 證明: ∵,∴ ∴. ∴ 又∵, ∴. 說明:本題考查不等式的證明方法——比較法(作商比較法).作商比較法證明不等式的步驟是:判斷符號、作商、變形、判斷與1的大小. 典型例題三 例3 對于任意實(shí)數(shù)、,求證(當(dāng)且僅當(dāng)時(shí)取等號) 分析 這個(gè)題若使用比較法來證明,將會很麻煩,因?yàn)?,所要證明的不等式中有,展開后很復(fù)雜。若使用綜合法,從重要不等式:出發(fā),再恰當(dāng)?shù)乩貌坏仁降挠嘘P(guān)性質(zhì)及“配方”的技巧可得到證明。 證明:∵

3、(當(dāng)且僅當(dāng)時(shí)取等號) 兩邊同加, 即: (1) 又:∵ (當(dāng)且僅當(dāng)時(shí)取等號) 兩邊同加 ∴ ∴ (2) 由(1)和(2)可得(當(dāng)且僅當(dāng)時(shí)取等號). 說明:此題參考用綜合法證明不等式.綜合法證明不等式主要是應(yīng)用均值不等式來證明,要注意均值不等式的變形應(yīng)用,一般式子中出現(xiàn)有平方和乘積形式后可以考慮用綜合法來解. 典型例題四 例4 已知、、,,求證 分析 顯然這個(gè)題用比較法是不易證出的。若把通分,則會把不等式變得較復(fù)雜而不易得到證明.由于右邊是一個(gè)常數(shù),故可考慮把左邊的式子變?yōu)榫哂小暗箶?shù)”特征的形

4、式,比如,再利用“均值定理”就有可能找到正確的證明途徑,這也常稱為“湊倒數(shù)”的技巧. 證明:∵ ∴ ∵,同理:,。 ∴ 說明:此題考查了變形應(yīng)用綜合法證明不等式.題目中用到了“湊倒數(shù)”,這種技巧在很多不等式證明中都可應(yīng)用,但有時(shí)要首先對代數(shù)式進(jìn)行適當(dāng)變形,以期達(dá)到可以“湊倒數(shù)”的目的. 典型例題五 例5 已知,求證:>0. 分析:此題直接入手不容易,考慮用分析法來證明,由于分析法的過程可以用綜合法來書寫,所以此題用兩種方法來書寫證明過程. 證明一:(分析法書寫過程) 為了證明>0 只需要證明> ∵ ∴

5、∴>0 ∴>成立 ∴>0成立 證明二:(綜合法書寫過程) ∵ ∴ ∴> >0 ∴>成立 ∴>0成立 說明:學(xué)會分析法入手,綜合法書寫證明過程,但有時(shí)這兩種方法經(jīng)常混在一起應(yīng)用,混合應(yīng)用時(shí),應(yīng)用語言敘述清楚. 典型例題六 例6 若,且,求證: 分析 這個(gè)不等式從形式上不易看出其規(guī)律性,與我們掌握的定理和重要的結(jié)論也沒有什么直接的聯(lián)系,所以可以采用分析的方法來尋找證明途徑.但用“分析”法證不等式,要有嚴(yán)格的格式,即每一步推出的都是上一步的充分條件,直到推出的條件是明顯成立的(已知條件或某些定理等). 證明:為要證 只需證, 即證, 也就是, 即證, 即

6、證, ∵, ∴,故即有, 又 由可得成立, ∴ 所求不等式成立. 說明:此題考查了用分析法證明不等式.在題目中分析法和綜合法是綜合運(yùn)用的,要注意在書寫時(shí),分析法的書寫過程應(yīng)該是:“欲證……需證……”,綜合法的書寫過程是:“因?yàn)椋ā撸裕ā啵?,即使在一個(gè)題目中是邊分析邊說明也應(yīng)該注意不要弄混. 典型例題七 例7 若,求證. 分析:本題結(jié)論的反面比原結(jié)論更具體、更簡、宜用反證法. 證法一:假設(shè),則, 而,故. ∴.從而, ∴. ∴. ∴. 這與假設(shè)矛盾,故. 證法二:假設(shè),則, 故,即,即, 這不可能.從而. 證法三:假設(shè),則.

7、由,得,故. 又, ∴. ∴,即. 這不可能,故. 說明:本題三種方法均采用反證法,有的推至與已知矛盾,有的推至與已知事實(shí)矛盾. 一般說來,結(jié)論中出現(xiàn)“至少”“至多”“唯一”等字句,或結(jié)論以否定語句出現(xiàn),或結(jié)論肯定“過頭”時(shí),都可以考慮用反證法. 典型例題八 例8 設(shè)、為正數(shù),求證. 分析:用綜合法證明比較困難,可試用分析法. 證明:要證,只需證, 即證, 化簡得,. ∵, ∴. ∴. ∴原不等式成立. 說明:1.本題證明易出現(xiàn)以下錯(cuò)誤證法:,,然后分(1);(2);(3)且;(4)且來討論,結(jié)果無效. 2.用分析法證明數(shù)學(xué)問題,要求相鄰兩步的關(guān)系是

8、,前一步是后一步的必要條件,后一步是前一步的充分條件,當(dāng)然相互為充要條件也可以. 典型例題九 例9 已知,求證. 分析:聯(lián)想三角函數(shù)知識,進(jìn)行三角換元,然后利用三角函數(shù)的值域進(jìn)行證明. 證明:從條件看,可用三角代換,但需要引入半徑參數(shù). ∵, ∴可設(shè),,其中. ∴. 由,故. 而,,故. 說明:1.三角代換是最常見的變量代換,當(dāng)條件為或或時(shí),均可用三角代換.2.用換元法一定要注意新元的范圍,否則所證不等式的變量和取值的變化會影響其結(jié)果的正確性. 典型例題十 例10 設(shè)是正整數(shù),求證. 分析:要求一個(gè)項(xiàng)分式的范圍,它的和又求不出來,可以采用“化整為零”的方法,觀

9、察每一項(xiàng)的范圍,再求整體的范圍. 證明:由,得. 當(dāng)時(shí),; 當(dāng)時(shí), …… 當(dāng)時(shí),. ∴. 說明:1、用放縮法證明不等式,放縮要適應(yīng),否則會走入困境.例如證明.由,如果從第3項(xiàng)開始放縮,正好可證明;如果從第2項(xiàng)放縮,可得小于2.當(dāng)放縮方式不同,結(jié)果也在變化. 2、放縮法一般包括:用縮小分母,擴(kuò)大分子,分式值增大;縮小分子,擴(kuò)大分母,分式值縮?。蝗坎簧儆诓糠?;每一次縮小其和變小,但需大于所求,第一次擴(kuò)大其和變大,但需小于所求,即不能放縮不夠或放縮過頭,同時(shí)放縮后便于求和. 典型例題十一 例11 已知,求證:. 分析:欲證不等式看起來較為“復(fù)雜”,宜將它化為較“簡單”的形

10、式,因而用分析法證明較好. 證明:欲證, 只須證. 即要證, 即要證. 即要證, 即要證. 即要證,即. 即要證  ?。?) ∵,∴(*)顯然成立, 故 說明:分析法證明不等式,實(shí)質(zhì)上是尋求結(jié)論成立的一個(gè)充分條件.分析法通常采用“欲證——只要證——即證——已知”的格式. 典型例題十二 例12 如果,,,求證:. 分析:注意到不等式左邊各字母在項(xiàng)中的分布處于分離狀態(tài),而右邊卻結(jié)合在一起,因而要尋求一個(gè)熟知的不等式具有這種轉(zhuǎn)換功能(保持兩邊項(xiàng)數(shù)相同),由,易得,此式的外形特征符合要求,因此,我們用如下的結(jié)合法證明. 證明:∵            

11、                                       . ∴. 說明:分析時(shí)也可以認(rèn)為是連續(xù)應(yīng)用基本不等式而得到的.左右兩邊都是三項(xiàng),實(shí)質(zhì)上是公式的連續(xù)使用. 如果原題限定,,,則不等式可作如下變形:進(jìn)一步可得到:. 顯然其證明過程仍然可套用原題的思路,但比原題要難,因?yàn)榘l(fā)現(xiàn)思路還要有一個(gè)轉(zhuǎn)化的過程. 典型例題十三 例13 已知,,,求證:在三數(shù)中,不可能都大于. 分析:此命題的形式為否定式,宜采用反證法證明.假設(shè)命題不成立,則三數(shù)都大于,從這個(gè)結(jié)論出發(fā),進(jìn)一步去導(dǎo)出矛盾. 證明:假設(shè)三數(shù)都大于, 即,,.

12、 又∵,,, ∴,,. ∴  ?、? 又∵,,. 以上三式相加,即得:  ?、? 顯然①與②相矛盾,假設(shè)不成立,故命題獲證. 說明:一般情況下,如果命題中有“至多”、“至少”、“都”等字樣,通常情況下要用反證法,反證法的關(guān)鍵在于“歸謬”,同時(shí),在反證法的證明過程中,也貫穿了分析法和綜合法的解題思想. 典型例題十四 例14 已知、、都是正數(shù),求證:. 分析:用分析法去找一找證題的突破口.要證原不等式,只需證,即只需證.把變?yōu)?,問題就解決了.或有分析法的途徑,也很容易用綜合法的形式寫出證明過程. 證法一:要證, 只需證, 即,移項(xiàng),得. 由、、為正數(shù),得. ∴原不等式

13、成立. 證法二:∵、、為正數(shù), . 即,故. , . 說明:題中給出的,,,,只因?yàn)椤?、都是正?shù),形式同算術(shù)平均數(shù)與幾何平均數(shù)定理一樣,不加分析就用算術(shù)平均數(shù)與幾何平均數(shù)定理來求證,問題就不好解決了. 原不等式中是用“不大于”連結(jié),應(yīng)該知道取等號的條件,本題當(dāng)且僅當(dāng)時(shí)取“=”號.證明不等式不論采用何種方法,僅僅是一個(gè)手段或形式問題,我們必須掌握證題的關(guān)鍵.本題的關(guān)鍵是證明. 典型例題十五 例15 已知,,且.求證:. 分析:記,欲證,聯(lián)想到正、余弦函數(shù)的值域,本題采用三角換元,借助三角函數(shù)的變換手段將很方便,由條件,可換元,圍繞公式來進(jìn)行. 證明:令,,且, 則

14、 ∵,∴,即成立. 說明:換元的思想隨處可見,這里用的是三角代換法,這種代換如能將其幾何意義挖掘出來,對代換實(shí)質(zhì)的認(rèn)識將會深刻得多,常用的換元法有:(1)若,可設(shè);(2)若,可設(shè),,;(3)若,可設(shè),,且. 典型例題十六 例16 已知是不等于1的正數(shù),是正整數(shù),求證. 分析:從求證的不等式看,左邊是兩項(xiàng)式的積,且各項(xiàng)均為正,右邊有2的因子,因此可考慮使用均值不等式. 證明:∵是不等于1的正數(shù), ∴, ∴.    ① 又.   ?、? 將式①,②兩邊分別相乘得 , ∴. 說明:本題看起來很復(fù)雜,但根據(jù)題中特點(diǎn),選擇綜合法求證非常順利.由特點(diǎn)選方法是解題的關(guān)鍵,這里

15、因?yàn)椋缘忍柌怀闪?,又因?yàn)棰伲趦蓚€(gè)不等式兩邊均為正,所以可利用不等式的同向乘性證得結(jié)果.這也是今后解題中要注意的問題. 典型例題十七 例17 已知,,,,且,求證. 分析:從本題結(jié)構(gòu)和特點(diǎn)看,使用比較法和綜合法都難以奏效.為找出使不等式成立的充分條件不妨先用分析法一試,待思路清晰后,再決定證題方法. 證明:要證, 只需證, 只需證. ∵,,, ∴,,, ∴, ∴成立. ∴. 說明:此題若一味地用分析法去做,難以得到結(jié)果.在題中得到只需證后,思路已較清晰,這時(shí)改用綜合法,是一種好的做法.通過此例可以看出,用分析法尋求不等式的證明途徑時(shí),有時(shí)還要與比較法、綜合法等結(jié)

16、合運(yùn)用,決不可把某種方法看成是孤立的. 典型例題十八 例18 求證. 分析:此題的難度在于,所求證不等式的左端有多項(xiàng)和且難以合并,右邊只有一項(xiàng).注意到這是一個(gè)嚴(yán)格不等式,為了左邊的合并需要考查左邊的式子是否有規(guī)律,這只需從下手考查即可. 證明:∵, ∴. 說明:此題證明過程并不復(fù)雜,但思路難尋.本題所采用的方法也是解不等式時(shí)常用的一種方法,即放縮法.這類題目靈活多樣,需要巧妙變形,問題才能化隱為顯,這里變形的這一步極為關(guān)鍵. 典型例題十九 例19 在中,角、、的對邊分別為,,,若,求證. 分析:因?yàn)樯婕暗饺切蔚倪吔顷P(guān)系,故可用正弦定理或余弦定理進(jìn)行邊角的轉(zhuǎn)化. 證明:∵,∴. 由余弦定理得 ∴, ∴      =                說明:三角形中最常使用的兩個(gè)定理就是正弦和余弦定理,另外還有面積公式.本題應(yīng)用知識較為豐富,變形較多.這種綜合、變形能力需要讀者在平時(shí)解題時(shí)體會和總結(jié),證明不等式的能力和直覺需要長期培養(yǎng).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!