5、是以3為周期的周期數(shù)列,a16=a3×5+1=a1=.
8.已知數(shù)列{an}滿足a1=1,a2=2,且an=(n≥3),則a2 013=________.
答案:2
解析:將a1=1,a2=2代入an=,得
a3==2,
同理可得a4=1,a5=,a6=,
a7=1,a8=2,
故數(shù)列{an}是周期數(shù)列,周期為6,
故a2 013=a335×6+3=a3=2.
9.已知{an}的前n項(xiàng)和為Sn,且滿足log2(Sn+1)=n+1,則an=________.
答案:
解析:由已知條件,可得Sn+1=2n+1.
則Sn=2n+1-1,
當(dāng)n=1時(shí),a1=S1=3,
當(dāng)n
6、≥2時(shí),an=Sn-Sn-1=2n+1-1-2n+1=2n,n=1時(shí)不適合上式,
故an=
10.對于正項(xiàng)數(shù)列{an},定義Hn=為{an}的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為Hn=,則數(shù)列{an}的通項(xiàng)公式為________.
答案:an=,n∈N*
解析:由Hn=,可得
a1+2a2+3a3+…+nan==,①
當(dāng)n≥2時(shí),
a1+2a2+3a3+…+(n-1)an-1=,②
①-②,得nan=-=,
所以an=.
又n=1時(shí),由①可得a1=,也適合上式,
所以數(shù)列{an}的通項(xiàng)公式為an=,n∈N*.
三、解答題
11.已知數(shù)列{an}中,a1=1,前n項(xiàng)和S
7、n=an.
(1)求a2,a3;
(2)求數(shù)列{an}的通項(xiàng)公式.
解:(1)∵Sn=an,且a1=1,
∴S2=a2,即a1+a2=a2,得a2=3.
由S3=a3,得3(a1+a2+a3)=5a3,得a3=6.
(2)由題設(shè)知a1=1.
當(dāng)n≥2時(shí),有an=Sn-Sn-1=an-an-1,
整理,得an=an-1,即=,
于是=3,=,=,…,=,
以上n-1個(gè)式子的兩端分別相乘,得=,
∴an=,n≥2.
又a1=1適合上式,故an=,n∈N*.
12.已知數(shù)列{an}滿足前n項(xiàng)和Sn=n2+1,數(shù)列{bn}滿足bn=,且前n項(xiàng)和為Tn,設(shè)cn=T2n+1-Tn
8、.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)判斷數(shù)列{cn}的增減性.
解:(1)a1=2,an=Sn-Sn-1=2n-1(n≥2).
∴ bn=
(2)∵ cn=bn+1+bn+2+…+b2n+1
=++…+,
∴ cn+1-cn=+-
=<0,
∴ {cn}是遞減數(shù)列.
13.在數(shù)列{an},{bn}中,a1=2,an+1-an=6n+2,點(diǎn)在y=x3+mx的圖象上,{bn}的最小項(xiàng)為b3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求m的取值范圍.
解:(1)∵an+1-an=6n+2,
∴當(dāng)n≥2時(shí),an-an-1=6n-4.
∴an=(an-an-1)+(
9、an-1-an-2)+…+(a2-a1)+a1
=(6n-4)+(6n-10)+…+8+2
=+2
=3n2-3n+2n-2+2
=3n2-n,
顯然a1也滿足an=3n2-n,
∴an=3n2-n.
(2)∵點(diǎn)在y=x3+mx的圖象上,
∴bn=(3n-1)3+m(3n-1).
∴b1=8+2m,b2=125+5m,b3=512+8m,b4=1 331+11m.
∵{bn}的最小項(xiàng)是b3,
∴
∴-273≤m≤-129.
∵bn+1=(3n+2)3+m(3n+2),bn=(3n-1)3+m(3n-1),
∴bn+1-bn=3[(3n+2)2+(3n-1)2+(3n+2)(3n-1)]+3m=3(27n2+9n+3+m),
當(dāng)n≥4時(shí),27n2+9n+3>273,
∴27n2+9n+3+m>0,
∴bn+1-bn>0,∴n≥4時(shí),bn+1>bn.
綜上可知,-273≤m≤-129,
∴m的取值范圍為[-273,-129].