《2020屆高考數(shù)學(xué)一輪總復(fù)習(xí) 課時(shí)跟蹤練(五十三)直線的交點(diǎn)坐標(biāo)與距離公式 理(含解析)新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)一輪總復(fù)習(xí) 課時(shí)跟蹤練(五十三)直線的交點(diǎn)坐標(biāo)與距離公式 理(含解析)新人教A版(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)跟蹤練(五十三)
A組 基礎(chǔ)鞏固
1.直線2x+y+m=0和x+2y+n=0的位置關(guān)系是( )
A.平行 B.垂直
C.相交但不垂直 D.不能確定
解析:直線2x+y+m=0的斜率k1=-2,直線x+2y+n=0的斜率為k2=-,則k1≠k2,且k1k2≠-1.故選C.
答案:C
2.已知點(diǎn)A(1,-2),B(m,2)且線段AB的垂直平分線的方程是x+2y-2=0,則實(shí)數(shù)m的值是( )
A.-2 B.-7 C.3 D.1
解析:因?yàn)榫€段AB的中點(diǎn)在直線x+2y-2=0上,代入解得m=3.
答案:C
3.已知直線l1:mx+y-1=0與直線
2、l2:(m-2)x+my-1=0,則“m=1”是“l(fā)1⊥l2”的( )
A.充分不必要條件 B.充要條件
C.必要不充分條件 D.既不充分也不必要條件
解析:由l1⊥l2,得m(m-2)+m=0,解得m=0或m=1,所以“m=1”是“l(fā)1⊥l2”的充分不必要條件,故選A.
答案:A
4.若直線l1:y=k(x-4)與直線l2關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),則直線l2恒過(guò)定點(diǎn)( )
A.(0,4) B.(0,2)
C.(-2,4) D.(4,-2)
解析:由于直線l1:y=k(x-4)恒過(guò)定點(diǎn)(4,0),其關(guān)于點(diǎn)(2,1)對(duì)稱(chēng)的點(diǎn)為(0,2),又由于直線l1:y=k(x
3、-4)與直線l2關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),所以直線l2恒過(guò)定點(diǎn)(0,2).
答案:B
5.若函數(shù)y=ax+8與y=-x+b的圖象關(guān)于直線y=x對(duì)稱(chēng),則a+b=( )
A. B.- C.2 D.-2
解析:直線y=ax+8關(guān)于y=x對(duì)稱(chēng)的直線方程為x=ay+8,所以x=ay+8與y=-x+b為同一直線,可得所以a+b=2.
答案:C
6.若直線l1:x+3y+m=0(m>0)與直線l2:2x+6y-3=0的距離為,則m=( )
A.7 B. C.14 D.17
解析:直線l1:x+3y+m=0(m>0),即2x+6y+2m=0,因?yàn)樗c直線l2:2x+6y
4、-3=0的距離為,所以=,求得m=,故選B.
答案:B
7.(2019·嘉興一中月考)若點(diǎn)P在直線l:x-y-1=0上運(yùn)動(dòng),且A(4,1),B(2,0),則|PA|+|PB|的最小值是( )
A. B. C.3 D.4
解析:設(shè)A(4,1)關(guān)于直線x-y-1=0的對(duì)稱(chēng)點(diǎn)為A′(2,3),所以|PA|+|PB|=|PA′|+|PB|,
當(dāng)P,A′,B三點(diǎn)共線時(shí),|PA|+|PB|取得最小值,
|A′B|==3.
答案:C
8.(2019·安陽(yáng)一模)兩條平行線l1,l2分別過(guò)點(diǎn)P(-1,2),Q(2,-3),它們分別繞P,Q旋轉(zhuǎn),但始終保持平行,則l1,l2之間距離的
5、取值范圍是( )
A.(5,+∞) B.(0,5]
C.(,+∞) D.(0, ]
解析:當(dāng)PQ與平行線l1,l2垂直時(shí),|PQ|為平行線l1,l2間的距離的最大值,為=,
所以l1,l2之間距離的取值范圍是(0, ].故選D.
答案:D
9.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是________.
解析:由題意知=≠,所以m=8,所以直線6x+my+14=0可化為3x+4y+7=0,所以兩平行線之間的距離d==2.
答案:2
10.已知直線l:2x-3y+1=0,點(diǎn)A(-1,-2),則點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo)為_(kāi)___
6、____.
解析:設(shè)A′(x,y),
由已知得
解得故A′.
答案:
11.(2019·唐山模擬)若直線l與直線2x-y-2=0關(guān)于直線x+y-4=0對(duì)稱(chēng),則l的方程是________.
解析:由得
即兩直線的交點(diǎn)坐標(biāo)為(2,2),
在直線2x-y-2=0上取一點(diǎn)A(1,0),
設(shè)點(diǎn)A關(guān)于直線x+y-4=0的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(a,b).
則即解得
即對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(4,3),
則l的方程為=,
整理得x-2y+2=0.
答案:x-2y+2=0
12.l1,l2是分別經(jīng)過(guò)點(diǎn)A(1,1),B(0,-1)的兩條平行直線,當(dāng)l1與l2間的距離最大時(shí),直線l1的方程是____
7、____.
解析:當(dāng)AB⊥l1時(shí),兩直線l1與l2間的距離最大,由kAB==2,知l1的斜率k=-.
所以直線l1的方程為y-1=-(x-1),
即x+2y-3=0.
答案:x+2y-3=0
B組 素養(yǎng)提升
13.(2019·臨汾模擬)設(shè)直線l1:x-2y+1=0與直線l2:mx+y+3=0的交點(diǎn)為A;P,Q分別為l1,l2上的點(diǎn),點(diǎn)M為PQ的中點(diǎn),若AM=PQ,則m的值為( )
A.2 B.-2 C.3 D.-3
解析:在△APQ中,M為PQ的中點(diǎn),且AM=PQ,
所以△APQ為直角三角形,且∠PAQ=90°,
所以l1⊥l2,
所以1×m+(-2)×1=
8、0,
解得m=2.故選A.
答案:A
14.(2019·安慶模擬)設(shè)兩條直線的方程分別為x+y+a=0和x+y+b=0,已知a,b是關(guān)于x的方程x2+x+c=0的兩個(gè)實(shí)數(shù)根,且0≤c≤,則這兩條直線間距離的最大值為( )
A. B. C. D.
解析:因?yàn)閍,b是關(guān)于x的方程x2+x+c=0的兩個(gè)實(shí)根,所以a+b=-1,ab=c.
因?yàn)橹本€x+y+a=0和x+y+b=0之間的距離d=,
所以d2==,
因?yàn)?≤c≤,
所以≤1-4c≤1,
所以≤≤,
即d2∈,
所以這兩條直線之間的距離的最大值為.故選B.
答案:B
15.以點(diǎn)A(4,1),B(1,5
9、),C(-3,2),D(0,-2)為頂點(diǎn)的四邊形ABCD的面積為_(kāi)_______.
解析:因?yàn)閗AB==-,
kDC==-.
kAD==,kBC==.
則kAB=kDC,kAD=kBC,所以四邊形ABCD為平行四邊形.
又kAD·kAB=-1,即AD⊥AB,
故四邊形ABCD為矩形.
故S=|AB|·|AD|=×=25.
答案:25
16.設(shè)m∈R,過(guò)定點(diǎn)A的動(dòng)直線x+my=0和過(guò)定點(diǎn)B的動(dòng)直線mx-y-m+3=0交于點(diǎn)P(x,y),則|PA|·|PB|的最大值是________.
解析:易知A(0,0),B(1,3)且兩直線互相垂直,
即△APB為直角三角形,
所以|PA|·|PB|≤===5.
當(dāng)且僅當(dāng)|PA|=|PB|時(shí),等號(hào)成立.
答案:5
5