秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第6講 解析幾何 第2課時 圓錐曲線綜合問題練習 文

上傳人:Sc****h 文檔編號:116598534 上傳時間:2022-07-06 格式:DOC 頁數(shù):12 大小:2.44MB
收藏 版權(quán)申訴 舉報 下載
2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第6講 解析幾何 第2課時 圓錐曲線綜合問題練習 文_第1頁
第1頁 / 共12頁
2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第6講 解析幾何 第2課時 圓錐曲線綜合問題練習 文_第2頁
第2頁 / 共12頁
2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第6講 解析幾何 第2課時 圓錐曲線綜合問題練習 文_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第6講 解析幾何 第2課時 圓錐曲線綜合問題練習 文》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學大二輪復習 沖刺創(chuàng)新專題 題型2 解答題 規(guī)范踩點 多得分 第6講 解析幾何 第2課時 圓錐曲線綜合問題練習 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2課時 圓錐曲線綜合問題 [考情分析] 圓錐曲線綜合問題包括:探索性問題、定點與定值問題、范圍與最值問題等.這類問題一般以直線和圓錐曲線的位置關(guān)系為載體,參數(shù)處理為核心,需要運用函數(shù)與方程、不等式、平面向量等諸多知識求解,試題難度較大. 熱點題型分析 熱點1 定點、定值問題 1.直線恒過定點是指無論直線如何變動,必有一個定點的坐標適合這條直線的方程.問題就歸結(jié)為用參數(shù)把直線方程表示出來,無論參數(shù)如何變化,這個方程必有一組常數(shù)解. 2.定值的證明和探索一般是先利用特殊情形確定定值,再給出一般化的證明或直接證得與參數(shù)無關(guān)的數(shù)值,在這類問題中,選擇消元的方法是非常關(guān)鍵的. (2

2、019·全國卷Ⅰ)已知點A,B關(guān)于坐標原點O對稱,|AB|=4,⊙M過點A,B且與直線x+2=0相切. (1)若A在直線x+y=0上,求⊙M的半徑. (2)是否存在定點P,使得當A運動時,|MA|-|MP|為定值?并說明理由. 解 (1)因為⊙M過點A,B,所以圓心M在線段AB的垂直平分線上.由已知A在直線x+y=0上,且A,B關(guān)于坐標原點O對稱,所以M在直線y=x上,故可設(shè)M(a,a). 因為⊙M與直線x+2=0相切, 所以⊙M的半徑為r=|a+2|. 由已知得|AO|=2. 又MO⊥AO,故可得2a2+4=(a+2)2, 解得a=0或a=4. 故⊙M的半徑r=2或r=6.

3、 (2)存在定點P(1,0),使得|MA|-|MP|為定值. 理由如下: 設(shè)M(x,y),由已知, 得⊙M的半徑為r=|x+2|,|AO|=2. 由于MO⊥AO,故可得x2+y2+4=(x+2)2, 化簡,得M的軌跡方程為y2=4x. 因為曲線C:y2=4x是以點P(1,0)為焦點, 以直線x=-1為準線的拋物線, 所以|MP|=x+1. 因為|MA|-|MP|=r-|MP|=x+2-(x+1)=1, 所以存在滿足條件的定點P. 1.動直線過定點問題的解法:設(shè)動直線方程(斜率存在)為y=kx+m,由題設(shè)條件將m用k表示為m=f(k),借助于點斜式方程思想確定定點坐標

4、. 2.定值問題的解法 (1)首先由特例得出一個值(此值一般就是定值). (2)將問題轉(zhuǎn)化為證明待定式與參數(shù)(某些變量)無關(guān);或先將式子用動點坐標或動直線中的參數(shù)表示;再利用其滿足的約束條件消參得定值. (2018·北京高考)已知拋物線C:y2=2px經(jīng)過點P(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PA交y軸于M,直線PB交y軸于N. (1)求直線l的斜率的取值范圍; (2)設(shè)O為原點,=λ,=μ,求證:+為定值. 解 (1)因為拋物線y2=2px經(jīng)過點P(1,2),所以4=2p,解得p=2,所以拋物線的方程為y2=4x.由題意可知直線l的

5、斜率存在且不為0,設(shè)直線l的方程為y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依題意有Δ=(2k-4)2-4×k2×1>0,解得k<0或0

6、熱點2 范圍、最值問題 解決有關(guān)范圍、最值問題時,先要恰當?shù)匾胱兞?如點的坐標、角或斜率等),建立目標函數(shù),然后利用函數(shù)的有關(guān)知識和方法求解.具體可采用如下方法: (1)利用判別式構(gòu)造不等式,從而確定參數(shù)的取值范圍; (2)利用已知參數(shù)的取值范圍,求新參數(shù)的范圍,解這類問題的核心是在兩個參數(shù)之間建立相等關(guān)系; (3)利用已知或隱含的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍; (4)利用函數(shù)值域的求法,確定參數(shù)的取值范圍. (2017·浙江高考)如圖,已知拋物線x2=y(tǒng),點A,B,拋物線上的點P(x,y).過點B作直線AP的垂線,垂足為Q. (1)求直線AP斜率的取

7、值范圍; (2)求|PA|·|PQ|的最大值. 解 (1)設(shè)直線AP的斜率為k,則k==x-, 因為-

8、:依題意設(shè)出相關(guān)的參數(shù),如設(shè)點的坐標,設(shè)比例式的參數(shù)或設(shè)直線的方程等; 第二步:聯(lián)立方程:常把直線方程與曲線方程聯(lián)立,轉(zhuǎn)化為關(guān)于x(或y)的一元二次方程; 第三步:建立函數(shù):根據(jù)題設(shè)條件中的關(guān)系,建立目標函數(shù)的關(guān)系式; 第四步:求最值(或范圍):利用配方法、基本不等式法、單調(diào)性法(基本初等函數(shù)或?qū)?shù))等求其最值. (2019·全國卷Ⅱ)已知點A(-2,0),B(2,0),動點M(x,y)滿足直線AM與BM的斜率之積為-.記M的軌跡為曲線C. (1)求C的方程,并說明C是什么曲線; (2)過坐標原點的直線交C于P,Q兩點,點P在第一象限,PE⊥x軸,垂足為E,連接QE并延長交C于

9、點G. ①證明:△PQG是直角三角形; ②求△PQG面積的最大值. 解 (1)由題設(shè),得·=-, 化簡得C的方程為+=1(|x|≠2), 所以C為中心在坐標原點,焦點在x軸上的橢圓,不含左右頂點. (2)①證明:設(shè)直線PQ的斜率為k, 則其方程為y=kx(k>0). 由得x=±. 設(shè)u=,則P(u,uk),Q(-u,-uk),E(u,0). 于是直線QG的斜率為,方程為y=(x-u). 由 得(2+k2)x2-2uk2x+k2u2-8=0.(*) 設(shè)G(xG,yG),則-u和xG是方程(*)的解, 故xG=,由此得yG=. 從而直線PG的斜率為=-. 所以PQ⊥

10、PG,即△PQG是直角三角形. ②由①得|PQ|=2u ,|PG|=, 所以△PQG的面積 S=|PQ|·|PG|= =. 設(shè)t=k+, 則由k>0,得t≥2,當且僅當k=1時取等號. 因為S=在[2,+∞)上單調(diào)遞減, 所以當t=2,即k=1時,S取得最大值,最大值為. 因此,△PQG面積的最大值為. 熱點3 探索性問題 圓錐曲線中的探索性問題??疾榻Y(jié)論存在和條件探究兩種題型,一般的解題思路如下: (1)結(jié)論存在型:即證明在給定的條件下,一些給定的結(jié)論是否存在.解題時一般先對結(jié)論作肯定假設(shè),然后結(jié)合已知條件進行推證,若推證無矛盾,則正確;若推出矛盾,則否定此結(jié)論.

11、過程可歸納為:假設(shè)—推證—定論; (2)條件探究型:即給出結(jié)論,需要分析出具備的條件,并加以證明.解題時一般從結(jié)論出發(fā),依據(jù)其他已知條件,通過必要的邏輯推理,逐步找到結(jié)論成立的等價條件,即“執(zhí)果索因”.  (2019·全國卷Ⅱ)已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的兩個焦點,P為C上的點,O為坐標原點. (1)若△POF2為等邊三角形,求C的離心率; (2)如果存在點P,使得PF1⊥PF2,且△F1PF2的面積等于16,求b的值和a的取值范圍. 解 (1)連接PF1.由△POF2為等邊三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2

12、a=|PF1|+|PF2|=(+1)c,故C的離心率為e==-1. (2)由題意可知,滿足條件的點P(x,y)存在當且僅當 |y|·2c=16,·=-1,+=1, 即c|y|=16,① x2+y2=c2,② +=1.③ 由②③及a2=b2+c2,得y2=. 又由①,知y2=,故b=4. 由②③及a2=b2+c2得x2=(c2-b2), 所以c2≥b2,從而a2=b2+c2≥2b2=32,故a≥4. 當b=4,a≥4時,存在滿足條件的點P. 所以b=4,a的取值范圍為[4,+∞). 解決探索性問題時要注意:先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確

13、則不存在. 1.當條件和結(jié)論不唯一時,要分類討論. 2.當給出結(jié)論,推導出存在的條件時,先假設(shè)成立,再推出條件. 3.當條件和結(jié)論都未知時,按常規(guī)方法解題較難,因此要開放思維,采取其他途徑. 設(shè)橢圓M:+=1(a>b>0)的左、右焦點分別為A(-1,0),B(1,0),C為橢圓M上的點,且∠ACB=,S△ABC=. (1)求橢圓M的標準方程; (2)設(shè)過橢圓M右焦點且斜率為k的動直線與橢圓M相交于E,F(xiàn)兩點,探究在x軸上是否存在定點D,使得·為定值?若存在,試求出定值和點D的坐標;若不存在,請說明理由. 解 (1)在△ABC中,由余弦定理得AB2=CA2+CB2-2CA·CB

14、cos∠ACB=(CA+CB)2-3CA·CB=4. 又S△ABC=CA·CBsin∠ACB=CA·CB=, ∴CA·CB=,代入上式得CA+CB=2. 橢圓長軸2a=2,焦距2c=AB=2. 所以橢圓M的標準方程為+y2=1. (2)設(shè)直線方程為y=k(x-1),E(x1,y1),F(xiàn)(x2,y2), 聯(lián)立 消去y,得(1+2k2)x2-4k2x+2k2-2=0,Δ=8k2+8>0, ∴x1+x2=,x1x2=. 假設(shè)在x軸上存在定點D(x0,0), 使得·為定值, ∴·=(x1-x0,y1)·(x2-x0,y2) =x1x2-x0(x1+x2)+x+y1y2 =x1

15、x2-x0(x1+x2)+x+k2(x1-1)(x2-1) =(1+k2)x1x2-(x0+k2)(x1+x2)+x+k2 =. 要使·為定值,則·的值與k無關(guān), ∴2x-4x0+1=2(x-2),解得x0=, 此時·=-為定值,定點為. 專題作業(yè) 1.(2019·全國卷Ⅲ)已知曲線C:y=,D為直線y=-上的動點,過D作C的兩條切線,切點分別為A,B. (1)證明:直線AB過定點; (2)若以E為圓心的圓與直線AB相切,且切點為線段AB的中點,求四邊形ADBE的面積. 解 (1)證明:設(shè)D,A(x1,y1),則x=2y1. 因為y′=x,所以切線DA的斜率為x1,故

16、=x1. 整理得2tx1-2y1+1=0. 設(shè)B(x2,y2),同理可得2tx2-2y2+1=0. 故直線AB的方程為2tx-2y+1=0. 所以直線AB過定點. (2)由(1)得直線AB的方程為y=tx+. 由可得x2-2tx-1=0. 于是x1+x2=2t,x1x2=-1, y1+y2=t(x1+x2)+1=2t2+1, |AB|=|x1-x2|=×=2(t2+1). 設(shè)d1,d2分別為點D,E到直線AB的距離, 則d1=,d2= . 因此,四邊形ADBE的面積 S=|AB|(d1+d2)=(t2+3) . 設(shè)M為線段AB的中點,則M. 因為⊥, 而=(t,

17、t2-2),與向量(1,t)平行, 所以t+(t2-2)t=0,解得t=0或t=±1. 當t=0時,S=3;當t=±1時,S=4. 因此,四邊形ADBE的面積為3或4. 2.(2017·全國卷Ⅰ)已知橢圓C:+=1(a>b>0),四點P1(1,1),P2(0,1),P3,P4中恰有三點在橢圓C上. (1)求C的方程; (2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為-1,證明:l過定點. 解 (1)由于P3,P4兩點關(guān)于y軸對稱,故由題設(shè)知橢圓C經(jīng)過P3,P4兩點. 又由+>+,知橢圓C不經(jīng)過點P1, 所以點P2在橢圓C上. 因此解得

18、 故橢圓C的方程為+y2=1. (2)證明:設(shè)直線P2A與直線P2B的斜率分別為k1,k2. 如果l與x軸垂直,設(shè)l:x=t,由題設(shè)知t≠0,且|t|<2,可得A,B的坐標分別為,, 則k1+k2=-=-1, 解得t=2,不符合題設(shè). 從而可設(shè)l:y=kx+m(m≠1). 將y=kx+m代入+y2=1, 得(4k2+1)x2+8kmx+4m2-4=0. 由題設(shè)可知Δ=16(4k2-m2+1)>0. 設(shè)A(x1,y1),B(x2,y2), 則x1+x2=-,x1x2=. 而k1+k2=+=+ =. 由題設(shè)k1+k2=-1, 故(2k+1)x1x2+(m-1)(x1+x

19、2)=0. 即(2k+1)·+(m-1)·=0, 解得k=-. 當且僅當m>-1時,Δ>0, 于是l:y=-x+m,即y+1=-(x-2), 所以l過定點(2,-1). 3.(2019·北京高考)已知拋物線C:x2=-2py經(jīng)過點(2,-1). (1)求拋物線C的方程及其準線方程; (2)設(shè)O為原點,過拋物線C的焦點作斜率不為0的直線l交拋物線C于兩點M,N,直線y=-1分別交直線OM,ON于點A和點B.求證:以AB為直徑的圓經(jīng)過y軸上的兩個定點. 解 (1)由拋物線C:x2=-2py經(jīng)過點(2,-1), 得p=2. 所以拋物線C的方程為x2=-4y,其準線方程為y=1.

20、 (2)證明:拋物線C的焦點為F(0,-1). 設(shè)直線l的方程為y=kx-1(k≠0). 由得x2+4kx-4=0. 設(shè)M(x1,y1),N(x2,y2),則x1x2=-4. 直線OM的方程為y=x. 令y=-1,得點A的橫坐標xA=-. 同理得點B的橫坐標xB=-. 設(shè)點D(0,n),則=, =, ·=+(n+1)2=+(n+1)2 =+(n+1)2=-4+(n+1)2. 令·=0,即-4+(n+1)2=0, 得n=1或n=-3. 綜上,以AB為直徑的圓經(jīng)過y軸上的定點(0,1)和(0,-3). 4.已知橢圓C:+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,

21、離心率為,點P在橢圓C上,且△PF1F2的面積的最大值為2. (1)求橢圓C的方程; (2)已知直線l:y=kx+2(k≠0)與橢圓C交于不同的兩點M,N,若在x軸上存在點G,使得|GM|=|GN|,求點G的橫坐標的取值范圍. 解 (1)由已知,得 解得a2=9,b2=8,c2=1, 所以橢圓C的方程為+=1. (2)設(shè)M(x1,y1),N(x2,y2),MN的中點為E(x0,y0), 若存在點G(m,0),使得|GM|=|GN|,則GE⊥MN. 由得(8+9k2)x2+36kx-36=0, 由Δ>0,得k∈R.所以x1+x2=-, 則x0=,y0=kx0+2=. 因為GE⊥MN,所以kGE=-,即=-, 所以有m==. 當k>0時,9k+≥2=12,所以-≤m<0;當k<0時,9k+≤-12,所以0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!