《新北師大版七年級上冊數(shù)學知識點總結.doc》由會員分享,可在線閱讀,更多相關《新北師大版七年級上冊數(shù)學知識點總結.doc(6頁珍藏版)》請在裝配圖網上搜索。
1、北師大七年級上數(shù)學知識點第一章 豐富的圖形世界1、幾何圖形從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。2、點、線、面、體(1)幾何圖形的組成點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。體:幾何體也簡稱體。(2)點動成線,線動成面,面動成體。3、生活中的立體圖形 圓柱柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、(按名稱分) 錐 圓錐棱錐4、棱柱及其有關概念:棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側棱:相鄰兩個側面的交線叫做側棱。n棱柱有兩個底面,n個側面,共(n+2
2、)個面;3n條棱,n條側棱;2n個頂點。5、正方體的平面展開圖:11種6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。第二章 有理數(shù)及其運算1、有理數(shù)的分類 正有理數(shù) 整數(shù) 有理數(shù) 零 有理數(shù) 負有理數(shù) 分數(shù) 2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。4、
3、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。5、絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值,(|a|0)。若|a|=a,則a0;若|a|=-a,則a0。正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0?;橄喾磾?shù)的兩個數(shù)的絕對值相等。6、有理數(shù)比較大小:正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。7、有理數(shù)的運算:(1)五種運算:加、減、乘、除、乘方 多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,
4、積的符號為正。只要有一個數(shù)為零,積就為零。有理數(shù)加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加。異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。一個數(shù)同0相加,仍得這個數(shù)?;橄喾磾?shù)的兩個數(shù)相加和為0。有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)與0相乘,積仍為0。有理數(shù)除法法則:兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何非0的數(shù)都得0。注意:0不能作除數(shù)。有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。正數(shù)的任何次冪都是正數(shù),
5、負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù)。(2)有理數(shù)的運算順序先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。(3)運算律加法交換律 加法結合律 乘法交換律 乘法結合律 乘法對加法的分配律 8、科學記數(shù)法一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學記數(shù)法。(n=整數(shù)位數(shù)-1)第三章 整式及其加減1、代數(shù)式用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。注意:代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;代數(shù)式中不含有“=、”等符號。等式和不等式都不是代數(shù)式,但等號和不等
6、號兩邊的式子一般都是代數(shù)式;代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。代數(shù)式的書寫格式:代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;數(shù)字與字母相乘時,數(shù)字應寫在字母前面,如4a;帶分數(shù)與字母相乘時,應先把帶分數(shù)化成假分數(shù),如應寫作;數(shù)字與數(shù)字相乘,一般仍用“”號,即“”號不省略;在代數(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式,如4(a-4)應寫作;注意:分數(shù)線具有“”號和括號的雙重作用。在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。2、整式:單項式和多項式統(tǒng)稱為整式。單項式:都是數(shù)字和字母乘積的形式的代數(shù)
7、式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。注意:1.單獨的一個數(shù)或一個字母也是單項式;2.單獨一個非零數(shù)的次數(shù)是0;3.當單項式的系數(shù)為1或-1時,這個“1”應省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。注意:同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。同類項與系數(shù)無關,與字母的排列順序無關;幾個常數(shù)項也是同類項。4、合并同類項法則:把同類項的系數(shù)相
8、加,字母和字母的指數(shù)不變。5、去括號法則根據(jù)去括號法則去括號:括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“”號,把括號和它前面的“”號去掉,括號里各項都改變符號。根據(jù)分配律去括號:括號前面是“+”號看成+1,括號前面是“”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。6、添括號法則添“”號和括號,添到括號里的各項符號都不改變;添“”號和括號,添到括號里的各項符號都要改變。7、整式的運算:整式的加減法:(1)去括號;(2)合并同類項。第四章 基本平面圖形1、線段、射線、直線名稱圖形表示方法端點長度直線直線AB(或BA)直線
9、l無端點無法度量射線射線OM1個無法度量線段線段AB(或BA)線段l2個可度量長度2、直線的性質(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)(2)過一點的直線有無數(shù)條。(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。3、線段的性質(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。(3)線段的大小關系和它們的長度的大小關系是一致的。4、線段的中點:點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM
10、)。5、角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊?;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉而成的。6、角的表示角的表示方法有以下四種:用數(shù)字表示單獨的角,如1,2,3等。用小寫的希臘字母表示單獨的一個角,如,等。用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如B,C等。用三個大寫英文字母表示任一個角,如BAD,BAE,CAE等。注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。7、角的度量角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“”表示,1度記作“1”,n
11、度記作“n”。把1的角60等分,每一份叫做1分的角,1分記作“1”。把1 的角60等分,每一份叫做1秒的角,1秒記作“1”。1=60,1=60” 8、角的平分線從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。9、角的性質(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。(2)角的大小可以度量,可以比較,角可以參與運算。10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉,當它又和始邊重合時,所形成的角叫做周角。 11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊
12、形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。12、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。 圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。第五章 一元一次方程1、方程含有未知數(shù)的等式叫做方程。2、方程的解能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
13、3、等式的性質(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結果仍是等式。(2)等式的兩邊同時乘以同一個數(shù)(或除以同一個不為0的數(shù)),所得結果仍是等式。4、一元一次方程只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.6、解一元一次方程的一般步驟:(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1第六章 數(shù)據(jù)的收集與整理1、普查與抽樣調查為了特定目的對全部考察對象進行的全面調查,叫做普查。其
14、中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。2、扇形統(tǒng)計圖扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)圓心角度數(shù)360該項所占的百分比。(各個部分的圓心角度數(shù)之和為360)3、頻數(shù)直方圖頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。4、各種統(tǒng)計圖的特點條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。折線統(tǒng)計圖:能清楚地反映事物的變化情況。扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。6