秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題六 函數(shù)與導(dǎo)數(shù) 第5講 導(dǎo)數(shù)與方程練習(xí)(含解析)

上傳人:Sc****h 文檔編號:119019386 上傳時間:2022-07-13 格式:DOC 頁數(shù):20 大?。?.58MB
收藏 版權(quán)申訴 舉報 下載
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題六 函數(shù)與導(dǎo)數(shù) 第5講 導(dǎo)數(shù)與方程練習(xí)(含解析)_第1頁
第1頁 / 共20頁
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題六 函數(shù)與導(dǎo)數(shù) 第5講 導(dǎo)數(shù)與方程練習(xí)(含解析)_第2頁
第2頁 / 共20頁
(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題六 函數(shù)與導(dǎo)數(shù) 第5講 導(dǎo)數(shù)與方程練習(xí)(含解析)_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題六 函數(shù)與導(dǎo)數(shù) 第5講 導(dǎo)數(shù)與方程練習(xí)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題六 函數(shù)與導(dǎo)數(shù) 第5講 導(dǎo)數(shù)與方程練習(xí)(含解析)(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第5講 導(dǎo)數(shù)與方程 判斷、證明或討論函數(shù)零點個數(shù) 兩類零點問題的不同處理方法:利用零點存在性定理的條件為函數(shù)圖象在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0.(1)直接法:判斷一個零點時,若函數(shù)為單調(diào)函數(shù),則只需取值證明f(a)·f(b)<0;(2)分類討論法:判斷幾個零點時,需要先結(jié)合單調(diào)性,確定分類討論的標(biāo)準(zhǔn),再利用零點存在性定理,在每個單調(diào)區(qū)間內(nèi)取值證明f(a)·f(b)<0. 高考真題 思維方法 【直接法】 (2019·高考全國卷Ⅱ)已知函數(shù)f(x)=ln x-. (1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點; (2)設(shè)x0是f(x

2、)的一個零點,證明曲線y=ln x在點A(x0,ln x0)處的切線也是曲線y=ex的切線. (1)f(x)的定義域為(0,1)∪(1,+∞). 因為f′(x)=+>0,【關(guān)鍵1:正確求出導(dǎo)函數(shù),研究函數(shù)的單調(diào)性】所以f(x)在(0,1),(1,+∞)單調(diào)遞增. 因為f(e)=1-<0,f(e2)=2-=>0,所以f(x)在(1,+∞)有唯一零點x1(e

3、)內(nèi)存在一個零點】 綜上,f(x)有且僅有兩個零點. (2)略 【分類討論法】 (2019·高考全國卷Ⅰ)已知函數(shù)f(x)=sin x-ln(1+x),f′(x)為f(x)的導(dǎo)數(shù),證明: (1)f′(x)在區(qū)間存在唯一極大值點; (2)f(x)有且僅有2個零點. 證明:(1)設(shè)g(x)=f′(x),則g(x)=cos x-,g′(x)=-sin x+. 當(dāng)x∈時,g′(x)單調(diào)遞減,而g′(0)>0,g′<0,可得g′(x)在有唯一零點,設(shè)為α. 【關(guān)鍵1:利用零點的存在性定理確定g′(x)在內(nèi)有唯一零點】 則當(dāng)x∈(-1,α)時,g′(x)>0;當(dāng)x∈時,g′(x)<0.

4、 所以g(x)在(-1,α)單調(diào)遞增,在單調(diào)遞減,故g(x)在存在唯一極大值點,即f′(x)在存在唯一極大值點. 【關(guān)鍵2:根據(jù)函數(shù)的單調(diào)性與極大值點的定義判斷極大值點的存在性】 (2)f(x)的定義域為(-1,+∞). ①當(dāng)x∈(-1,0]時,由(1)知,f′(x)在(-1,0)單調(diào)遞增,而f′(0)=0,所以當(dāng)x∈(-1,0)時,f′(x)<0,故f(x)在(-1,0)單調(diào)遞減.又f(0)=0,從而x=0是f(x)在(-1,0]的唯一零點. ②當(dāng)x∈時,由(1)知,f′(x)在(0,α)單調(diào)遞增,在單調(diào)遞減,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且當(dāng)x∈(

5、0,β)時,f′(x)>0;當(dāng)x∈時,f′(x)<0.故f(x)在(0,β)單調(diào)遞增,在單調(diào)遞減. 又f(0)=0,f=1-ln>0,所以當(dāng)x∈時,f(x)>0.從而,f(x)在沒有零點. ③當(dāng)x∈時,f′(x)<0,所以f(x)在單調(diào)遞減.而f>0,f(π)<0,所以f(x)在有唯一零點. ④當(dāng)x∈時,ln(x+1)>1,所以f(x)<0,從而f(x)在(π,+∞)沒有零點.【關(guān)鍵3:在定義域內(nèi)的不同區(qū)間,利用函數(shù)的單調(diào)性、最值、零點存在性定理判 斷零點的個數(shù)】 綜上,f(x)有且僅有2個零點. [典型例題] (2019·廣東省七校聯(lián)考)已知函數(shù)f(x)=ln x+ax.

6、(1)討論函數(shù)f(x)的單調(diào)性; (2)當(dāng)a<0時,求函數(shù)f(x)的零點個數(shù). 【解】 (1)由題意知,f(x)的定義域為(0,+∞),f′(x)=+a=. ①當(dāng)a≥0時,f′(x)>0,f(x)在(0,+∞)上單調(diào)遞增; ②當(dāng)a<0時,令f′(x)=0,得x=-, 故在上,f′(x)>0,f(x)單調(diào)遞增, 在上,f′(x)<0,f(x)單調(diào)遞減. 綜上,當(dāng)a≥0時,f(x)在(0,+∞)上單調(diào)遞增;當(dāng)a<0時,f(x)在上單調(diào)遞增,在上單調(diào)遞減. (2)由(1)可知,當(dāng)a<0時,f(x)在上單調(diào)遞增,在上單調(diào)遞減. 故f(x)max=f=ln-1. ①當(dāng)ln <1,即a

7、<-時,f <0, 函數(shù)f(x)沒有零點. ②當(dāng)ln =1時,即a=-時,f=0, 函數(shù)f(x)有一個零點. ③當(dāng)ln>1,即-0, 令0e, 則在(e,+∞)上,g′(t)=-1<0,故g(t)在(e,+∞)上單調(diào)遞減, 故在(e,+∞)上,g(t)

8、)上有兩個零點. 綜上,當(dāng)a<-時,函數(shù)f(x)沒有零點;當(dāng)a=-時,函數(shù)f(x)有一個零點;當(dāng)-0,所以f′(x)<0,所以f(x)

9、在(0,+∞)上單調(diào)遞減. ②m>0時,令g(x)=mx2-2x+m, (i)m≥1時,Δ=4-4m2≤0,此時f′(x)≥0,f(x)在(0,+∞)上單調(diào)遞增; (ii)00,令f′(x)=0,則x1=,x2=, 所以x∈∪時,f′(x)>0, x∈時,f′(x)<0, 所以f(x)在和上單調(diào)遞增,在上單調(diào)遞減. 綜上,m≤0時,f(x)在(0,+∞)上單調(diào)遞減;m≥1時,f(x)在(0,+∞)上單調(diào)遞增;0

10、(2+,+∞)上單調(diào)遞增,在(2-,2+)上單調(diào)遞減, 又f(1)=0,且1∈(2-,2+),所以f(x)在(2-,2+)上有唯一零點x=1. 又02+,f(e3)=-f(e-3)>0,所以f(x)在(2+,+∞)上有唯一零點. 綜上,當(dāng)m=時,f(x)有且只有三個零點. 根據(jù)零點個數(shù)確定參數(shù)范圍 已知函數(shù)有零點求參數(shù)范圍常用的方法:(1)分離參數(shù)法:一般命題情境為給出區(qū)間,求滿足函數(shù)零點個數(shù)的參數(shù)范圍,通常解法為從f(x)中分離出參數(shù),然后利用求導(dǎo)的方法

11、求出由參數(shù)構(gòu)造的新函數(shù)的最值,根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分類討論法:一般命題情境為沒有固定區(qū)間,求滿足函數(shù)零點個數(shù)的參數(shù)范圍,通常解法為結(jié)合單調(diào)性,先確定參數(shù)分類的標(biāo)準(zhǔn),在每個小范圍內(nèi)研究零點的個數(shù)是否符合題意,將滿足題意的參數(shù)的各小范圍并在一起,即為所求參數(shù)范圍. 高考真題 思維方法 【由導(dǎo)數(shù)特點分類討論】 (2018·高考全國卷Ⅱ)已知函數(shù)f(x)=ex-ax2. (1)若a=1,證明:當(dāng)x≥0時,f(x)≥1; (2)若f(x)在(0,+∞)只有一個零點,求a. (1)略 (2)設(shè)函數(shù)h(x)=1-ax2e-x. f(x)在(0

12、,+∞)只有一個零點當(dāng)且僅當(dāng)h(x)在(0,+∞)只有一個零點.【關(guān)鍵1:構(gòu)造函數(shù)h(x),將f(x)的零點情況轉(zhuǎn)化為h(x)的零點情況】 (ⅰ)當(dāng)a≤0時,h(x)>0,h(x)沒有零點; 【關(guān)鍵2:對參數(shù)a分類討論,結(jié)合函數(shù)值判斷函數(shù)零點情況】 (ⅱ)當(dāng)a>0時,h′(x)=ax(x-2)e-x.當(dāng)x∈(0,2)時,h′(x)<0;當(dāng)x∈(2,+∞)時,h′(x)>0. 所以h(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增. 故h(2)=1-是h(x)在(0,+∞)的最小值. 【關(guān)鍵3:分類討論,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,求函數(shù)最值】 ①若h(2)>0,即a<,h(x)在(

13、0,+∞)沒有零點; ②若h(2)=0,即a=,h(x)在(0,+∞)只有一個零點; ③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)有一個零點. 由(1)知,當(dāng)x>0時,ex>x2,所以 h(4a)=1-=1->1-=1->0. 故h(x)在(2,4a)有一個零點.因此h(x)在(0,+∞)有兩個零點. 【關(guān)鍵4:對函數(shù)最小值的符號分類討論,結(jié)合函數(shù)單調(diào)性判斷零點情況,求出參數(shù)值】 綜上,f(x)在(0,+∞)只有一個零點時,a=. 續(xù) 表 高考真題 思維方法 【直接分類討論】 (2017·高考全國卷Ⅰ)已知函數(shù)f(x)=ae2x+(a-2

14、)ex-x. (1)討論f(x)的單調(diào)性; (2)若f(x)有兩個零點,求a的取值范圍. (1)略 (2)(ⅰ)若a≤0,由(1)知,f(x)至多有一個零點. 【關(guān)鍵1:針對f(x)解析式的特點,可對參數(shù)a直接分類討論】 (ⅱ)若a>0,由(1)知,當(dāng)x=-ln a時,f(x)取得最小值,最小值為f(-ln a)=1-+ln a.【關(guān)鍵2:結(jié)合函數(shù)單調(diào)性求函數(shù)最小值,進而根據(jù)最小值直接判斷零點的情況】 ①當(dāng)a=1時,由于f(-ln a)=0,故f(x)只有一個零點; ②當(dāng)a∈(1,+∞)時,由于1-+ln a>0,即f(-ln a)>0,故f(x)沒有零點; ③當(dāng)a∈(0,1

15、)時,1-+ln a<0,即f(-ln a)<0. 又f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0,故f(x)在(-∞,-ln a)有一個零點. 設(shè)正整數(shù)n0滿足n0>ln,則f(n0)=en0(aen0+a-2)-n0>en0-n0>2n0-n0>0. 由于ln>-ln a,因此f(x)在(-ln a,+∞)有一個零點. 【關(guān)鍵3:對參數(shù)a分類討論,結(jié)合函數(shù)單調(diào)性與最小值判斷函數(shù)零點情況,求參數(shù)取值范圍】 綜上,a的取值范圍為(0,1). [典型例題] (2019·唐山模擬)已知函數(shù)f(x)=xex-a(x+1)2. (1)若a=e,求函數(shù)f(x)的極

16、值; (2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍. 【解】 (1)由題意知,當(dāng)a=e時,f(x)=xex-e(x+1)2,函數(shù)f(x)的定義域為(-∞,+∞), f′(x)=(x+1)ex-e(x+1)=(x+1)(ex-e). 令f′(x)=0,解得x=-1或x=1. 當(dāng)x變化時,f′(x),f(x)的變化情況如下表所示: x (-∞,-1) -1 (-1,1) 1 (1,+∞) f′(x) + 0 - 0 + f(x)  極大值-  極小值-e  所以當(dāng)x=-1時,f(x)取得極大值-;當(dāng)x=1時,f(x)取得極小值-e. (

17、2)令f(x)=0,即xex-a(x+1)2=0, 得xex=a(x+1)2. 當(dāng)x=-1時,方程為-e-1=a×0,顯然不成立, 所以x=-1不是方程的解,即-1不是函數(shù)f(x)的零點. 當(dāng)x≠-1時,分離參數(shù)得a=. 記g(x)=(x≠-1), 則g′(x)= =. 當(dāng)x<-1時,g′(x)<0,函數(shù)g(x)單調(diào)遞減; 當(dāng)x>-1時,g′(x)>0,函數(shù)g(x)單調(diào)遞增. 當(dāng)x=0時,g(x)=0;當(dāng)x→-∞時,g(x)→0;當(dāng)x→-1時,g(x)→-∞;當(dāng)x→+∞時,g(x)→+∞. 故函數(shù)g(x)的圖象如圖所示. 作出直線y=a,由圖可知,當(dāng)a<0時,直線y

18、=a和函數(shù)g(x)的圖象有兩個交點,此時函數(shù)f(x)有兩個零點.故實數(shù)a的取值范圍是(-∞,0). 利用函數(shù)零點的情況求參數(shù)范圍的方法 (1)分離參數(shù)(a=g(x))后,將原問題轉(zhuǎn)化為y=g(x)的值域(最值)問題或轉(zhuǎn)化為直線y=a與y=g(x)的圖象的交點個數(shù)問題(優(yōu)選分離、次選分類)求解; (2)利用零點的存在性定理構(gòu)建不等式求解; (3)轉(zhuǎn)化為兩個熟悉的函數(shù)圖象的位置關(guān)系問題,從而構(gòu)建不等式求解.  [對點訓(xùn)練] (2019·四省八校雙教研聯(lián)考)已知函數(shù)f(x)=(a-1)x++ln x(a>0). (1)討論函數(shù)f(x)的單調(diào)性; (2)若g(x)=f(x)-

19、m,當(dāng)a=2時,g(x)在[e-1,e]上有兩個不同的零點,求m的取值范圍. 解:(1)f′(x)=a-1-+==, ①當(dāng)a=1時,f′(x)=,令f′(x)>0,得x>1,令f′(x)<0,得01時,令f′(x)>0,得x>1或x<-<0,所以f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增. ③當(dāng)a<1時, (i)00,得

20、iii)0,得1f(e), 所以m∈.    可化為函數(shù)零點的函數(shù)問題與函數(shù)零點性質(zhì)研究 本考點包括兩個方向:一是與函數(shù)零點性質(zhì)有關(guān)的問題(更多涉及構(gòu)造函數(shù)法);二是可以轉(zhuǎn)化為函數(shù)零點的函數(shù)問題(更多涉及整體轉(zhuǎn)化、數(shù)形結(jié)合等方法技巧). 能夠利用等價轉(zhuǎn)換構(gòu)造函數(shù)法求解的問題常涉及參數(shù)的最

21、值、曲線交點、零點的大小關(guān)系等.求解時一般先通過等價轉(zhuǎn)換,將已知轉(zhuǎn)化為函數(shù)零點問題,再構(gòu)造函數(shù),然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值等,并結(jié)合分類討論,通過確定函數(shù)的零點達(dá)到解決問題的目的. 高考真題 思維方法 【可化為函數(shù)零點的函數(shù)問題】 (2014·高考課標(biāo)全國卷Ⅱ)已知函數(shù)f(x)=x3-3x2+ax+2,曲線y=f(x)在點(0,2)處的切線與x軸交點的橫坐標(biāo)為-2. (1)求a; (2)證明:當(dāng)k<1時,曲線y=f(x)與直線y=kx-2只有一個交點. (1)略 (2)證明:由(1)知,f(x)=x3-3x2+x+2. 設(shè)g(x)=f(x)-kx+2=x3-3x

22、2+(1-k)x+4.【關(guān)鍵1:等價轉(zhuǎn)換,構(gòu)造函數(shù)】 由題設(shè)知1-k>0. 當(dāng)x≤0時,g′(x)=3x2-6x+1-k>0,g(x)單調(diào)遞增, g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一實根.【關(guān)鍵2:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,判斷函數(shù)的實根情況】 當(dāng)x>0時,令h(x)=x3-3x2+4,則g(x)=h(x)+(1-k)x>h(x). h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增,所以g(x)>h(x)≥h(2)=0. 所以g(x)=0在(0,+∞)沒有實根. 綜上,g(x)=0在R有唯一實根,

23、 【關(guān)鍵3:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,結(jié)合零點存在性定理判斷實根情況】即曲線y=f(x)與直線y=kx-2只有一個交點. 續(xù) 表 高考真題 思維方法 【函數(shù)零點性質(zhì)研究】 (2016·高考全國卷Ⅰ)已知函數(shù)f(x)=(x-2)ex+a(x-1)2有兩個零點. (1)求a的取值范圍; (2)設(shè)x1,x2是f(x)的兩個零點,證明:x1+x2<2. (1)略 (2)證明:不妨設(shè)x1<x2.由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),又f(x)在(-∞,1)上單調(diào)遞減,所以x1+x2<2等價于f(x1)>f(2-x2),即f(2-x2)<0.【關(guān)鍵

24、1:利用分析法轉(zhuǎn)化要證明的不等式】 由于f(2-x2)=-x2e2-x2+a(x2-1)2,① 而f(x2)=(x2-2)ex2+a(x2-1)2=0,② 所以f(2-x2)=-x2e2-x2-(x2-2)ex2.【關(guān)鍵2:將②代入①,利用整體代入消元】 設(shè)g(x)=-xe2-x-(x-2)ex,【關(guān)鍵3:構(gòu)造函數(shù)】 則g′(x)=(x-1)(e2-x-ex). 所以當(dāng)x>1時,g′(x)<0,而g(1)=0,故當(dāng)x>1時,g(x)<0. 從而g(x2)=f(2-x2)<0,故x1+x2<2. 【關(guān)鍵4:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性、用最值證明不等式】 [典型例題] (20

25、19·武漢市調(diào)研測試)已知函數(shù)f(x)=a(ln x+)-(a∈R,a為常數(shù))在(0,2)內(nèi)有兩個極值點x1,x2(x10,由題意,知y=h(x)在(0,2)內(nèi)存在兩個零點. 因為h′(x)=ex-1-a, 則當(dāng)a≤0時,h′(x)>0,h(x)在(0,2)上單調(diào)遞增,h(x)至多有一個零點.不合題意. 當(dāng)a>0時,由h′(x)=0,得x=1+ln a,由1+ln a>0,得a>. (i)若1+l

26、n a<2且h(2)>0,即0,x→0時h(x)>0, 從而h(x)在(0,1+ln a)和(1+ln a,2)上各有一個零點. 所以y=h(x)在(0,2)上存在兩個零點. (ii)若1+ln a≥2,即a≥e時,h(x)在(0,2)上單調(diào)遞減,h(x)至多有一個零點,舍去. (iii)若1+ln a<2且h(2)≤0,即

27、≤a

28、ln a,2)上單調(diào)遞增. 所以h(x2)0時,求f(x)在區(qū)間(0,1]上的最大值; (2)若函數(shù)g(x)=f(x)+x有兩個極值點x1,x2(x1

29、 解:(1)由已知得f(x)的定義域為(0,+∞). f′(x)=+ax-(a+1)=. 當(dāng)01時,<1,f(x)在上單調(diào)遞增,在上單調(diào)遞減, 所以f(x)的最大值為f()=-ln a--1. 綜上,當(dāng)01時,f(x)在區(qū)間(0,1]上的最大值為-ln a--1. (2)證明:g(x)=f(x)+x=ln x+x2-ax,g(x)的定義域為(0,+∞),g′(x)=+ax-a=. 若g(x)有兩個極值點x1,x2(x1<

30、x2),則方程ax2-ax+1=0的判別式Δ=a2-4a>0,且x1+x2=1,x1x2=>0,所以a>4. 又x1

31、1.(2019·濟南市模擬考試)已知函數(shù)f(x)=(x-1)2-x+ln x(a>0). (1)討論f(x)的單調(diào)性; (2)若11, 當(dāng)x∈(0,1)時,f′(x)>0,f(x)是增函數(shù), 當(dāng)x∈時,f′(x)<0,f(x)是減函數(shù), 當(dāng)x∈時,f′(x)>0.f(x)是增函數(shù). ③若a>1,則0<<1, 當(dāng)x∈時

32、,f′(x)>0,f(x)是增函數(shù), 當(dāng)x∈時,f′(x)<0,f(x)是減函數(shù), 當(dāng)x∈(1,+∞)時,f′(x)>0,f(x)是增函數(shù). 綜上所述,當(dāng)a=1時,f(x)在(0,+∞)上是增函數(shù); 當(dāng)01時,f(x)在上是增函數(shù),在上是減函數(shù),在(1,+∞)上是增函數(shù). (2)當(dāng)1

33、e), 則g′(a)=+-==>0, 所以g(a)在(1,e)上是增函數(shù), 所以g(a)×9-4+ln 4=ln 4+>0, 所以存在x0∈(1,4),使f(x0)=0, 所以當(dāng)1

34、明理由. 解:(1)f′(x)=ex(ln x-ax++b),f(x)的定義域為(0,+∞). 由已知,得即, 解得a=1,b=. (2)由(1)知,f(x)=ex,則f′(x)=ex, 令g(x)=ln x-x++,則g′(x)=-<0恒成立, 所以g(x)在(0,+∞)上單調(diào)遞減,又g(1)=>0,g(2)=ln 2-1<0, 所以存在唯一的x0∈(1,2),使得g(x0)=0,且當(dāng)x∈(0,x0)時,g(x)>0,即f′(x)>0,當(dāng)x∈(x0,+∞)時,g(x)<0,即f′(x)<0. 所以f(x)在(0,x0)上單調(diào)遞增,在(x0,+∞)上單調(diào)遞減. 又當(dāng)x→0時,

35、f(x)<0,f(1)=>0,f(2)=e2(ln 2-)>0,f(e)=ee<0, 所以存在k=0或2,使得y=f(x)在(k,k+1)上有唯一零點. 3.(2019·長春市質(zhì)量監(jiān)測(二))已知函數(shù)f(x)=ex+bx-1(b∈R). (1)討論f(x)的單調(diào)性; (2)若方程f(x)=ln x有兩個實數(shù)根,求實數(shù)b的取值范圍. 解:(1)由題意可得f′(x)=ex+b, 當(dāng)b≥0時,f′(x)>0,f(x)在(-∞,+∞)上單調(diào)遞增. 當(dāng)b<0時,若x≥ln(-b),則f′(x)≥0,f(x)在[ln (-b),+∞)上單調(diào)遞增; 若x

36、(x)在(-∞,ln (-b))上單調(diào)遞減. (2)令g(x)=ex+bx-1-ln x,則g′(x)=ex+b-,易知g′(x)單調(diào)遞增且一定有大于0的零點,設(shè)g′(x)大于0的零點為x0,則g′(x0)=0,即ex0+b-=0,b=-ex0. 方程f(x)=ln x有兩個實數(shù)根,即g(x)有兩個零點,則需滿足g(x0)<0,即ex0+bx0-1-ln x0=ex0+x0-1-ln x0=ex0-ex0x0-ln x0<0, 令h(x)=ex-exx-ln x(x>0),則h′(x)=-exx-<0, 所以h(x)在(0,+∞)上單調(diào)遞減, h(1)=0,所以ex0-ex0x0-l

37、n x0<0的解集為(1,+∞),所以b=-ex0<1-e. 當(dāng)b<1-e時,ex+bx-1-ln x>x+bx-ln x,有g(shù)(eb)>eb+beb-ln eb=(b+1)eb-b, 令G(x)=(x+1)ex-x=(x+1)(ex-1)+1,x<1-e,所以x+1<2-e<0,00,所以g(eb)>0,故g(eb)g(x0)<0,g(x)在(0,x0)上有唯一零點,另一方面,在(x0,+∞)上,當(dāng)x→+∞時,因為ex的增長速度快,所以g(x)>0. 綜上,b的取值范圍是(-∞,1-e). 4.已知函數(shù)f(x)=-x+2aln x.

38、(1)求f(x)的單調(diào)區(qū)間; (2)設(shè)g(x)=ln x-bx-cx2,若函數(shù)f(x)的兩個極值點x1,x2(x11,令f′(x)=0得x1=a-,x2=a+. 當(dāng)x∈(0,a-)∪(a+,+∞)時,f′(x)<0; 當(dāng)x∈(a-,a+)時,f′(x)>0. 所以當(dāng)a≤1時,f(x)的單調(diào)遞減區(qū)間為(0,+∞),無單調(diào)

39、遞增區(qū)間;當(dāng)a>1時,f(x)的單調(diào)遞減區(qū)間為(0,a-),(a+,+∞);單調(diào)遞增區(qū)間為(a-,a+). (2)由(1)知,a>1且x1+x2=2a,x1x2=1. 又g′(x)=-b-2cx,所以g′()=-b-c(x1+x2), 由g(x1)=g(x2)=0得ln =c(x-x)+b(x1-x2), 所以y=(x1-x2)g′()=-b(x1-x2)-c(x-x)=-ln=-ln. 令=t∈(0,1),則y=-ln t,所以y′=<0,則y=-ln t在(0,1)上單調(diào)遞減,且當(dāng)t→0時,y→+∞.由y=-ln t的取值范圍是[ln 2-,+∞),得t的取值范圍是(0,],所以4a2==++2=t++2∈[,+∞),又a>1,故實數(shù)a的取值范圍是[,+∞). - 20 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!