八年級數學下冊 1_2 第1課時 勾股定理教案 (新版)湘教版
《八年級數學下冊 1_2 第1課時 勾股定理教案 (新版)湘教版》由會員分享,可在線閱讀,更多相關《八年級數學下冊 1_2 第1課時 勾股定理教案 (新版)湘教版(3頁珍藏版)》請在裝配圖網上搜索。
1.2 直角三角形的性質和判定(Ⅱ) 第1課時 勾股定理 1.經歷探索及驗證勾股定理的過程,體會數形結合的思想;(重點) 2.掌握勾股定理,并應用它解決簡單的計算題;(重點) 3.了解利用拼圖驗證勾股定理的方法.(難點) 一、情境導入 如圖所示的圖形像一棵枝葉茂盛、姿態(tài)優(yōu)美的樹,這就是著名的畢達哥拉斯樹,它由若干個圖形組成,而每個圖形的基本元素是三個正方形和一個直角三角形.各組圖形大小不一,但形狀一致,結構奇巧.你能說說其中的奧秘嗎? 二、合作探究 探究點一:勾股定理 【類型一】 直接運用勾股定理 已知:如圖,在△ABC中,∠ACB=90,AB=13cm,BC=5cm,CD⊥AB于D,求: (1)AC的長; (2)S△ABC; (3)CD的長. 解析:(1)由于在△ABC中,∠ACB=90,AB=13cm,BC=5cm,根據勾股定理即可求出AC的長;(2)直接利用三角形的面積公式即可求出S△ABC;(3)根據CDAB=BCAC即可求出CD. 解:(1)∵在△ABC中,∠ACB=90,AB=13cm,BC=5cm,∴AC==12(cm); (2)∵S△ABC=CBAC=512=30(cm2); (3)∵S△ABC=ACBC=CDAB,∴CD==(cm). 方法總結:解答此類問題,一般是先利用勾股定理求出第三邊,然后利用兩種方法表示出同一個直角三角形的面積,根據面積相等得出一個方程,再解這個方程即可. 變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第6題 【類型二】 分類討論思想在勾股定理中的應用 在△ABC中,AB=15,AC=13,BC邊上的高AD=12,試求△ABC周長. 解析:本題應分△ABC為銳角三角形和鈍角三角形兩種情況進行討論. 解:此題應分兩種情況: (1)當△ABC為銳角三角形時,如圖①所示,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=5+9=14,∴△ABC的周長為15+13+14=42; (2)當△ABC為鈍角三角形時,如圖②所示,在Rt△ABD中,BD===9.在Rt△ACD中,CD===5,∴BC=9-5=4,∴△ABC的周長為:15+13+4=32,∴△ABC的周長為32或42. 方法總結:解題時要考慮全面,對于存在的可能情況,可作出相應的圖形,判斷是否符合題意. 變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第6題 【類型三】 勾股定理與等腰三角形的綜合 如圖所示,已知△ABC中,∠B=22.5,AB的垂直平分線分別交BC、AB于D、F點,BD=6,AE⊥BC于E,求AE的長. 解析:欲求AE,需與BD聯系,連接AD,由線段垂直平分線的性質可知AD=BD.可證△ADE是等腰直角三角形,再利用勾股定理求AE的長. 解:如圖所示,連接AD.∵DF是線段AB的垂直平分線,∴AD=BD=6,∴∠BAD=∠B=22.5.∵∠ADE=∠B+∠BAD=45,AE⊥BC,∴∠DAE=45,∴AE=DE.由勾股定理得AE2+DE2=AD2,∴2AE2=(6)2,∴AE==6. 方法總結:22.5雖然不是特殊角,但它是特殊角45的一半,所以經常利用等腰三角形和外角進行轉換.直角三角形中利用勾股定理求邊長是常用的方法. 變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第3題 探究點二:勾股定理與圖形的面積 探索與研究: 方法1:如圖: 對任意的符合條件的直角三角形ABC繞其頂點A旋轉90得直角三角形AED,所以∠BAE=90,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE的面積等于Rt△BAE和Rt△BFE的面積之和.根據圖示寫出證明勾股定理的過程; 方法2:如圖: 任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據圖示再寫一種證明勾股定理的方法嗎? 解析:方法1:根據四邊形ABFE的面積等于Rt△BAE和Rt△BFE的面積之和進行解答;方法2:根據△ABC和Rt△ACD的面積之和等于Rt△ABD和△BCD的面積之和解答. 解:方法1:S正方形ACFD=S四邊形ABFE=S△BAE+S△BFE,即b2=c2+(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2; 方法2:S四邊形ABCD=S△ABC+S△ACD,S四邊形ABCD=S△ABD+S△BCD,即S△ABC+S△ACD=S△ABD+S△BCD,即b2+ab=c2+a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2. 方法總結:證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理證明勾股定理. 變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第9題 三、板書設計 1.勾股定理 如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2. 2.勾股定理的應用 3.勾股定理與圖形的面積 課堂教學中,要注意調動學生的積極性.讓學生滿懷激情地投入到學習中,提高課堂效率.勾股定理的驗證既是本節(jié)課的重點,也是本節(jié)課的難點,為了突破這一難點,可設計拼圖活動,并自制精巧的課件讓學生從圖形上感知,再層層設問,從面積(數)入手,師生共同探究突破本節(jié)課的難點- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 八年級數學下冊 1_2 第1課時 勾股定理教案 新版湘教版 年級 數學 下冊 _2 課時 勾股定理 教案 新版 湘教版
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.hcyjhs8.com/p-11910568.html