高中數(shù)學 第一章 統(tǒng)計 1_5_2 估計總體的數(shù)字特征教案 北師大版必修31
《高中數(shù)學 第一章 統(tǒng)計 1_5_2 估計總體的數(shù)字特征教案 北師大版必修31》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第一章 統(tǒng)計 1_5_2 估計總體的數(shù)字特征教案 北師大版必修31(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
5.2 估計總體的數(shù)字特征 教學分析 教科書通過現(xiàn)實生活中的例子,引導學生認識到:只描述平均位置的特征是不夠的,還需要描述樣本數(shù)據(jù)離散程度的特征.通過對如何描述數(shù)據(jù)離散程度的探索,使學生體驗創(chuàng)造性思維的過程. 三維目標 1.正確理解樣本數(shù)據(jù)標準差的意義和作用,學會計算數(shù)據(jù)的標準差;能根據(jù)實際問題的需要合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并作出合理的解釋;會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征,形成對數(shù)據(jù)處理過程進行初步評價的意識. 2.在解決統(tǒng)計問題的過程中,進一步體會用樣本估計總體的思想,理解數(shù)形結(jié)合的數(shù)學思想和邏輯推理的數(shù)學方法;會用隨機抽樣的方法和樣本估計總體的思想解決一些簡單的實際問題,認識統(tǒng)計的作用,能夠辯證地理解數(shù)學知識與現(xiàn)實世界的聯(lián)系. 重點難點 教學重點:根據(jù)實際問題從樣本數(shù)據(jù)中提取基本的數(shù)字特征并作出合理解釋,估計總體的基本數(shù)字特征;體會樣本數(shù)字特征具有隨機性. 教學難點:用樣本平均數(shù)和標準差估計總體的平均數(shù)與標準差;能應(yīng)用相關(guān)知識解決簡單的實際問題. 課時安排 1課時 導入新課 思路1.平均數(shù)為我們提供了樣本數(shù)據(jù)的重要信息,但是,有時平均數(shù)也會使我們作出對總體的片面判斷.如某地區(qū)的統(tǒng)計顯示,該地區(qū)的中學生的平均身高為176 cm,給我們的印象是該地區(qū)的中學生生長發(fā)育好,身高較高.但是,假如這個平均數(shù)是從50萬名中學生中抽出的50名身高較高的學生計算出來的話,那么,這個平均數(shù)就不能代表該地區(qū)所有中學生的身體素質(zhì).因此,只有平均數(shù)難以概括樣本數(shù)據(jù)的實際狀態(tài),于是我們學習從另外的角度來考察樣本數(shù)據(jù)的統(tǒng)計量——標準差.(教師板書課題) 思路2.在一次射擊選拔比賽中,甲、乙兩名運動員各射擊10次,命中環(huán)數(shù)如下: 甲運動員:7,8,6,8,6,5,9,10,7,4; 乙運動員:9,5,7,8,7,6,8,6,7,7. 我們不難求得,甲=7,乙=7,兩個人射擊的平均成績是一樣的,那么,是否兩個人就沒有水平差距呢? 圖1 從圖1直觀上看,還是有差異的.很明顯,甲的成績比較分散,乙的成績相對集中,因此這節(jié)課我們從另外的角度來考察這兩組數(shù)據(jù),引入課題:標準差. 推進新課 1.如何通過頻率分布直方圖估計數(shù)字特征(中位數(shù)、眾數(shù)、平均數(shù))? 2.有甲、乙兩種鋼筋,現(xiàn)從中各抽取一個樣本(如下表)檢查它們的抗拉強度(單位:kg/mm2),通過計算發(fā)現(xiàn),兩個樣本的平均數(shù)均為125. 甲 110 120 130 125 120 125 135 125 135 125 乙 115 100 125 130 115 125 125 145 125 145 哪種鋼筋的質(zhì)量較好? 3.某種子公司為了在當?shù)赝菩袃煞N新水稻品種,對甲、乙兩種水稻進行了連續(xù)7年的種植對比實驗,年畝產(chǎn)量分別如下(單位:千克): 甲: 600, 880, 880, 620, 960, 570, 900(平均773); 乙: 800, 860, 850, 750, 750, 800, 700(平均787). 請你用所學統(tǒng)計學的知識,說明選擇哪種品種推廣更好? 4.全面建設(shè)小康社會是我們黨和政府的工作重心,某市按當?shù)匚飪r水平計算,人均年收入達到1.5萬元的家庭即達到小康生活水平.民政局對該市100戶家庭進行調(diào)查統(tǒng)計,它們的人均收入達到了1.6萬元,民政局即宣布該市市民生活水平已達到小康水平,你認為這樣的結(jié)論是否符合實際? 5.如何考查樣本數(shù)據(jù)的離散程度的大小呢?把數(shù)據(jù)在坐標系中刻畫出來,是否能直觀地判斷數(shù)據(jù)的離散程度? 討論結(jié)果: 1.利用頻率分布直方圖估計眾數(shù)、中位數(shù)、平均數(shù): 估計眾數(shù):頻率分布直方圖面積最大的方條的橫軸中點數(shù)字(最高矩形的中點). 估計中位數(shù):中位數(shù)把頻率分布直方圖分成左右兩邊面積相等. 估計平均數(shù):頻率分布直方圖中每個小矩形的面積乘以小矩形底邊中點的橫坐標之和. 2. 圖2 由圖2可以看出,乙樣本的最小值100低于甲樣本的最小值110,乙樣本的最大值145高于甲樣本的最大值135,這說明乙種鋼筋沒有甲種鋼筋的抗拉強度穩(wěn)定. 我們把一組數(shù)據(jù)的最大值與最小值的差稱為極差(range).由上圖可以看出,乙的極差較大,數(shù)據(jù)點較分散;甲的極差較小,數(shù)據(jù)點較集中,這說明甲比乙穩(wěn)定.運用極差對兩組數(shù)據(jù)進行比較,操作簡單方便,但如果兩組數(shù)據(jù)的集中程度差異不大時,就不容易得出結(jié)論了. 3.選擇的依據(jù)應(yīng)該是,產(chǎn)量高且穩(wěn)產(chǎn)的品種,所以選擇乙更為合理. 4.不符合實際. 原因是樣本太小,沒有代表性.在統(tǒng)計學里,對統(tǒng)計數(shù)據(jù)的分析,需要結(jié)合實際,側(cè)重于考察總體的相關(guān)數(shù)據(jù)特征.比如,市民平均收入問題,都是考察數(shù)據(jù)的離散程度. 5.把問題3中的數(shù)據(jù)在坐標系中刻畫出來.我們可以很直觀地知道,乙組數(shù)據(jù)比甲組數(shù)據(jù)更集中在平均數(shù)的附近,即乙的離散程度小, 如何用數(shù)字去刻畫這種離散程度呢? 考察樣本數(shù)據(jù)的離散程度的大小,最常用的統(tǒng)計量是方差和標準差. 標準差: 標準差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示. 所謂“平均距離”,其含義可作如下理解: 假設(shè)樣本數(shù)據(jù)是x1,x2,…,xn,表示這組數(shù)據(jù)的平均數(shù).xi到的距離是 |xi-|(i=1,2,…,n). 于是,樣本數(shù)據(jù)x1,x2,…,xn到的“平均距離”是 s=. 由于上式含有絕對值,運算不太方便,因此,通常改用如下公式來計算標準差: s=. 意義:標準差用來表示數(shù)據(jù)的穩(wěn)定性,標準差越大,數(shù)據(jù)的離散程度就越大,也就越不穩(wěn)定;標準差越小,數(shù)據(jù)的離散程度就越小,也就越穩(wěn)定.從標準差的定義可以看出,標準差s≥0,當s=0時,意味著所有的樣本數(shù)據(jù)都等于樣本平均數(shù). 標準差還可以用于對樣本數(shù)據(jù)的另外一種解釋.例如, 在關(guān)于居民月均用水量的例子中,平均數(shù)=1.973,標準差s=0.868,所以 +s=2.841,+2s=3.709; -s=1.105,-2s=0.237. 這100個數(shù)據(jù)中,在區(qū)間[-2s,+2s]=[0.237,3.709]外的只有4個,也就是說,[-2s,+2s]幾乎包含了所有樣本數(shù)據(jù). 從數(shù)學的角度考慮,人們有時用標準差的平方s2——方差來代替標準差,作為測量樣本數(shù)據(jù)離散程度的工具,其中s2=[(x1-)2+(x2-)2+…+(xn-)2]. 顯然,在刻畫樣本數(shù)據(jù)的離散程度上,方差與標準差是一樣的.但在解決實際問題時,一般多采用標準差. 需要指出的是,現(xiàn)實中的總體所包含的個體數(shù)往往是很多的,總體的平均數(shù)與標準差是不知道的.如何求得總體的平均數(shù)和標準差呢?通常的做法是用樣本的平均數(shù)和標準差去估計總體的平均數(shù)與標準差.這與前面用樣本的頻率分布來近似地代替總體分布是類似的.只要樣本的代表性好,這樣做就是合理的,也是可以接受的. 兩者都是描述一組數(shù)據(jù)圍繞平均數(shù)波動的大小,現(xiàn)實中應(yīng)用比較廣泛的是標準差. 思路1 1畫出下列四組樣本數(shù)據(jù)的條形圖,說明它們的異同點. (1)5,5,5,5,5,5,5,5,5; (2)4,4,4,5,5,5,6,6,6; (3)3,3,4,4,5,6,6,7,7; (4)2,2,2,2,5,8,8,8,8. 分析:先畫出數(shù)據(jù)的條形圖,根據(jù)樣本數(shù)據(jù)算出樣本數(shù)據(jù)的平均數(shù),利用標準差的計算公式即可算出每一組數(shù)據(jù)的標準差. 解:四組樣本數(shù)據(jù)的條形圖如圖3: 圖3 四組數(shù)據(jù)的平均數(shù)都是5.0,標準差分別是:0.00,0.82,1.49,2.83. 它們有相同的平均數(shù),但它們有不同的標準差,說明數(shù)據(jù)的離散程度是不一樣的. 例2 甲、乙兩人同時生產(chǎn)內(nèi)徑為25.40 mm的一種零件.為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出20件,量得其內(nèi)徑尺寸如下(單位:mm): 甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39 乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48 從生產(chǎn)的零件內(nèi)徑的尺寸看,誰生產(chǎn)的質(zhì)量較高? 分析:每一個工人生產(chǎn)的所有零件的內(nèi)徑尺寸組成一個總體.由于零件的生產(chǎn)標準已經(jīng)給出(內(nèi)徑25.40 mm),生產(chǎn)質(zhì)量可以從總體的平均數(shù)與標準差兩個角度來衡量.總體的平均數(shù)與內(nèi)徑標準尺寸25.40 mm的差異大時質(zhì)量低,差異小時質(zhì)量高;當總體的平均數(shù)與標準尺寸很接近時,總體的標準差小的時候質(zhì)量高,標準差大的時候質(zhì)量低.這樣,比較兩人的生產(chǎn)質(zhì)量,只要比較他們所生產(chǎn)的零件內(nèi)徑尺寸所組成的兩個總體的平均數(shù)與標準差的大小即可.但是,這兩個總體的平均數(shù)與標準差都是不知道的,根據(jù)用樣本估計總體的思想,我們可以通過抽樣分別獲得相應(yīng)的樣本數(shù)據(jù),然后比較這兩個樣本的平均數(shù)、標準差,以此作為兩個總體之間差異的估計值. 解:用計算器計算可得甲≈25.401,乙≈25.406;s甲≈0.037,s乙≈0.068. 從樣本平均數(shù)看,甲生產(chǎn)的零件內(nèi)徑比乙的更接近內(nèi)徑標準(25.40 mm),但是差異很??;從樣本標準差看,由于s甲- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學 第一章 統(tǒng)計 1_5_2 估計總體的數(shù)字特征教案 北師大版必修31 _5_2 估計 總體 數(shù)字 特征 教案 北師大 必修 31
鏈接地址:http://www.hcyjhs8.com/p-11972794.html