購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
黃河科技學(xué)院本科畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)
工 學(xué)院 機(jī) 械 系 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 專業(yè) 2010 級(jí) 專升本 班
學(xué)號(hào) 學(xué)生 指導(dǎo)教師
畢業(yè)設(shè)計(jì)(論文)題目
化工攪拌器的設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)工作內(nèi)容與基本要求(目標(biāo)、任務(wù)、途徑、方法,應(yīng)掌握的原始資料(數(shù)據(jù))、參考資料(文獻(xiàn))以及設(shè)計(jì)技術(shù)要求、注意事項(xiàng)等)
一、設(shè)計(jì)技術(shù)要求、原始資料(數(shù)據(jù))、參考資料(文獻(xiàn))
攪拌器是化工生產(chǎn)中經(jīng)常使用的設(shè)備,該設(shè)備可以代替手動(dòng)攪拌對(duì)人體有毒或?qū)ζつw有傷害的化工原料,結(jié)構(gòu)簡(jiǎn)單,使用方便,在化工生產(chǎn)應(yīng)用比較廣泛。本課題要求設(shè)計(jì)一個(gè)化工攪拌器,容積在600升左右,工作平穩(wěn)靈活,使用方便。
在做本課題時(shí),需要查閱機(jī)械制圖、機(jī)械設(shè)計(jì)、化工過(guò)程與設(shè)備等資料。
二、設(shè)計(jì)目標(biāo)與任務(wù)
設(shè)計(jì)出滿足要求的攪拌器,并完成該攪拌器的裝配圖與部分零件圖,查閱文獻(xiàn)資料不少于12篇,其中外文資料不少于2篇。
1、文獻(xiàn)綜述一篇,不少于3000字,與專業(yè)相關(guān)的英文翻譯一篇,不少于3000漢字。
2、畢業(yè)設(shè)計(jì)說(shuō)明書(shū)一份,內(nèi)容與字?jǐn)?shù)都不少于規(guī)定的任務(wù)量。
3、圖紙若干(折合后不少于A1圖紙3張,可以用計(jì)算機(jī)繪圖)。
4、包含本次設(shè)計(jì)的所有內(nèi)容的光盤(pán)一張。
畢業(yè)設(shè)計(jì)(論文)撰寫(xiě)規(guī)范及有關(guān)要求,請(qǐng)查閱《黃河科技學(xué)院本科畢業(yè)設(shè)計(jì)(論文)指導(dǎo)手冊(cè)》。
三、時(shí)間安排
1-4 周 完成開(kāi)題報(bào)告、文獻(xiàn)翻譯、文獻(xiàn)綜述及總體方案設(shè)計(jì)
5-10 周 完成總體設(shè)計(jì)、完成部分機(jī)構(gòu)的裝配圖及部分零件圖并撰寫(xiě)說(shuō)明書(shū)
10-12 周 修改論文、資格審查等
12 周 畢業(yè)答辯
畢業(yè)設(shè)計(jì)(論文)時(shí)間: 2012 年 2 月 13 日至 2010 年 5 月 15 日
計(jì) 劃 答 辯 時(shí) 間: 2012 年 5 月 19 日
專業(yè)(教研室)審批意見(jiàn):
審批人簽名:
黃河科技學(xué)院畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告表
課題名稱
化工攪拌器的設(shè)計(jì)
課題來(lái)源
教師擬訂
課題類型
AY
指導(dǎo)教師
學(xué)生姓名
專 業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 號(hào)
一、調(diào)研資料的準(zhǔn)備
本課題是設(shè)計(jì)類的題型,在做本課題時(shí),已查閱了機(jī)械制圖、機(jī)械設(shè)計(jì)、機(jī)電一體化等課程,以及查閱與課題相關(guān)的文獻(xiàn)資料。
二、設(shè)計(jì)的目的與要求
大學(xué)畢業(yè)設(shè)計(jì),是提高學(xué)生綜合應(yīng)用所學(xué)的理論知識(shí)來(lái)處理實(shí)際問(wèn)題的能力,是培養(yǎng)學(xué)生理論與實(shí)踐相結(jié)合的一個(gè)重要的實(shí)踐性環(huán)節(jié),是對(duì)大學(xué)四年所學(xué)知識(shí)總結(jié)與運(yùn)用。因此,本環(huán)節(jié)在教學(xué)過(guò)程中有著特別重要的意義。本課題是在此基礎(chǔ)上擬定而成的。
本課題的主要內(nèi)容是對(duì)化工攪拌器進(jìn)行設(shè)計(jì),該設(shè)備是化工生產(chǎn)中經(jīng)常使用的設(shè)備,可以代替手動(dòng)攪拌對(duì)人體有毒或?qū)ζつw有傷害的化工原料,機(jī)構(gòu)簡(jiǎn)單,使用方便,在化工生產(chǎn)應(yīng)用比較廣泛。本課題設(shè)計(jì)的化工攪拌器,容積在600升左右。
三、設(shè)計(jì)的思路與預(yù)期成果
1、設(shè)計(jì)思路:
根據(jù)任務(wù)書(shū)中的要求設(shè)計(jì)出化工攪拌器。
(1) 總體設(shè)計(jì); (2) 攪拌機(jī)的內(nèi)部設(shè)計(jì); (3) 電動(dòng)機(jī)及減速器的選型;
(4) 支撐裝置的設(shè)計(jì);(5) 軸的密封;
2、預(yù)期的成果
(1)完成文獻(xiàn)綜述一篇,不少與3000字,與專業(yè)相關(guān)的英文翻譯一篇,不少于3000字
(2)完成內(nèi)容與字?jǐn)?shù)都不少于規(guī)定量的畢業(yè)設(shè)計(jì)說(shuō)明書(shū)一份
(3)繪制裝配圖,部分零件圖
(4)刻錄包含本次設(shè)計(jì)的所有內(nèi)容的光盤(pán)一張
四、任務(wù)完成的階段內(nèi)容及時(shí)間安排
1周——2周 收集設(shè)計(jì)資料并完成開(kāi)題報(bào)告
3周——4周 完成英文資料翻譯并寫(xiě)出文獻(xiàn)綜述
5周——7周 進(jìn)行總體設(shè)計(jì)和部分零部件的選擇與設(shè)計(jì)
8周——12周 繪制裝配圖和部分零件圖、編寫(xiě)畢業(yè)設(shè)計(jì)說(shuō)明書(shū)
13周 修改整理,準(zhǔn)備答辯
五、完成設(shè)計(jì)(論文)所具備的條件因素
1.修完機(jī)械設(shè)計(jì)、機(jī)械制圖、機(jī)電一體化設(shè)計(jì)基礎(chǔ)等課程,獲得一定的理論知識(shí)及設(shè)計(jì)水平;
2.借助圖書(shū)館的相關(guān)文獻(xiàn)資料,以及相關(guān)的網(wǎng)絡(luò)等資源;
3.有多年教學(xué)和生產(chǎn)實(shí)踐經(jīng)驗(yàn)的導(dǎo)師的指導(dǎo)。
指導(dǎo)教師簽名: 日期:
課題來(lái)源:(1)教師擬訂;(2)學(xué)生建議;(3)企業(yè)和社會(huì)征集;(4)科研單位提供
課題類型:(1)A—工程設(shè)計(jì)(藝術(shù)設(shè)計(jì));B—技術(shù)開(kāi)發(fā);C—軟件工程;D—理論研究;E—調(diào)查報(bào)告
(2)X—真實(shí)課題;Y—模擬課題;Z—虛擬課題
要求(1)、(2)均要填,如AY、BX等。
Robotics and Computer-Integrated Manufac paths form Previous studies of time-optimal control in the fields of the speed and direction of actuation), and generally do not actuators can exert their maximum force. Fixed-field DC motors are common to most positioning armature voltage may be subject to limits arising from the motor characteristics or armature power supply. Such voltage limits confine the ability of the motor to produce ARTICLE IN PRESS the maximum output torque to a finite range of speeds. Beyond this range, maximum applied armature voltage— not armature current—is the factor limiting the motor 0736-5845/$-see front matter r 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.rcim.2006.07.002 C3 Corresponding author. E-mail addresses: sdtimar@ucdavis.edu (S.D. Timar), farouki@algol.engr.ucdavis.edu (R.T. Farouki). robotics [1–7] and CNC machining [8–10] were concerned with the minimum-time traversal of a prescribed path by a system with known dynamics and specified bounds on the motive-force capacity of its actuators. The solutions to such problems characteristically incur a ‘‘bang-bang control’’ strategy, in which the output of at least one system actuator is saturated at each instant throughout the path traversal. These studies typically assume actuators with constant and symmetric force limits (independent of and contouring applications in robotics and CNC machin- ing [11]. Since their torque output is directly proportional to the armature current, the constant symmetric torque limits reflect the maximum current capacity of the motor armature windings. Constant torque output is maintained by continuously varying the armature voltage in relation to the ‘‘back EMF’’ (proportional to the motor speed) or otherwise controlling the armature current supply [10]. In addition to the armature current limits, the applied CNC machine subject to both fixed and speed-dependent axis acceleration bounds arising from the output-torque characteristics of the axis drive motors. For a path specified by a polynomial parametric curve, the time-optimal feedrate is determined as a piecewise-analytic function of the curve parameter, with segments that correspond to saturation of the acceleration along one axis under constant or speed- dependent limits. Break points between the feedrate segments may be computed by numerical root-solving methods. For segments that correspond to fixed acceleration bounds, the (squared) optimal feedrate is rational in the curve parameter. For speed-dependent acceleration bounds, the optimal feedrate admits a closed-form expression in terms of a novel transcendental function whose values may be efficiently computed, for use in real-time control, by a special algorithm. The optimal feedrate admits a real-time interpolator algorithm, that can drive the machine directly from the analytic path description. Experimental results from an implementation of the time-optimal feedrate on a 3-axis CNC mill driven by an open-architecture software controller are presented. The algorithm is a significant improvement over that proposed in [Timar SD, Farouki RT, Smith TS, Boyadjieff CL. Algorithms for time-optimal control of CNC machines along curved tool paths. Robotics Comput Integrated Manufacturing 2005;21:37–53], since the addition of motor voltage constraints precludes the possibility of arbitrarily high speeds along linear or near-linear path segments. r 2006 Elsevier Ltd. All rights reserved. Keywords: 3-Axis machining; Feedrate functions; Acceleration constraints; Time-optimal path traversal; Bang-bang control; Real-time interpolators 1. Introduction address the question of the range of speeds over which the Algorithms are developed to compute the feedrate variation along a curved path, that ensures minimum traversal time for a 3-axis Time-optimal traversal of curved under both constant and speed-dependent Sebastian D. Timar, Department of Mechanical and Aeronautical Engineerin Received 7 July 2005; received in revised Abstract turing 23 (2007) 563–579 by Cartesian CNC machines axis acceleration bounds Rida T. Farouki C3 g, University of California, Davis, CA 95616, USA 23 March 2006; accepted 10 April 2006 ARTICLE IN PRESS torque output, resulting in a speed-dependent maximum torque that decreases linearly with increasing motor speed [10]. In 3-axis machining, the maximum current capacity of an axis drive motor imposes a constant acceleration limit at lower axis speeds, and the maximum voltage capacity imposes a speed-dependent acceleration limit at higher axis speeds. The transition from current-limited to voltage- limited operation of the motor occurs at the axis transition speed. At speeds below the transition speed, the maximum axis acceleration remains constant. At speeds greater than the transition speed, the maximum axis acceleration decreases linearly with the axis speed, dropping to zero at the axis no-load speed. To guarantee that time-optimal path traversals conform to both actuator current and voltage limits, algorithms must account for the regimes of both constant and speed- dependent acceleration limits on each machine axis. This paper generalizes the results of a previous study [9] employing only constant acceleration bounds (an assump- tion that incurs arbitrarily high speeds if the path contains extended linear segments), and introduces new algorithms to compute realistic time-optimal feedrates for Cartesian CNC machines with axis drive motors subject to both current and voltage limits. The inclusion of speed- dependent acceleration bounds incurs significant, qualita- tive changes to many aspects of the earlier algorithm in [9]—including the set of feasible feedrate and feed acceleration combinationsev; aT; the nature of the velocity limit curve (VLC); the different types of possible switching points; and the form of the feedrate function for extremal phase-plane trajectories. Nevertheless, for Cartesian CNC machines with independently driven axes, it is still possible to obtain an essentially closed-form solution for the time- optimal feedrate, given the ability to compute the roots of certain polynomial equations. We begin by reviewing DC motor operation in Section 2 and the axis acceleration bounds in Section 3. We introduce the problem of minimum-time traversal of curved paths with constant and speed-dependent axis acceleration limits in Section 4, and we derive feedrate expressions for constant and speed-dependent extremal acceleration trajectories. Feed acceleration limits, the VLC, and feedrate break points are then addressed in Sections 5–7, respectively. Following a discussion of the feedrate computation in Section 8, and the real-time CNC inter- polator algorithm in Section 9, we present details of feedrate computation and machine implementation results for several examples in Section 10. Finally, Section 11 summarizes our results and makes some concluding remarks. 2. DC motor torque limits As background for understanding the nature of the axis S.D. Timar, R.T. Farouki / Robotics and Computer-In564 acceleration bounds appropriate to Cartesian CNC ma- chines, we begin with a brief overview of the fixed-field DC motors that are commonly used to drive small-to-medium milling machines (see [10] for more complete details of their operation). The equations governing the operation of fixed- field motors are T ?K T I; E?K E o; V ?EtIR, i.e., the motor output torque T is proportional to the armature current I, the ‘‘back EMF’’ E is proportional to the motor angular speed o, and the applied armature voltage V is equal to the sum of the back EMF and the voltage drop across the armature resistance R. The proportionality factors K T and K E , called the torque constant and back EMF constant, are intrinsic physical properties of a given motor. From these expressions, one can easily derive the motor torque–speed relation T ?T s 1C0 o o 0 C18C19 , (1) where T s ?K T V=R is the stall torque, and o 0 ?V=K E is the no-load speed. Hence, the motor torque decreases linearly with increasing motor speed, from T ?T s at o? 0toT ?0ato?o 0 .See[12] for more complete details. At motor start-up and low speeds, the back EMF E is small compared to the applied voltage V, and a current- limiting device is used to constrain the current I to an (approximately) constant maximum value I lim to prevent damage to the armature windings. Hence, the motor torque output remains constant at T lim ?K T I lim throughout the low-speed range of operation. As the motor speeds up, the applied armature voltage eventually reaches the maximum motor or power supply voltage rating, V lim . This occurs at the transition speed, defined by o t ? V lim C0I lim R K E . (2) For speeds greater than o t , the armature voltage (rather than the current) is the limiting factor on the motor torque output. At the voltage limit, the torque T decreases linearly with increasing motor speed o, dropping to zero when the no-load speed o 0 is attained. Fig. 1 depicts the motor constraints imposed by the current and voltage limits, I lim and V lim ,intheeo; TTplane for both positive and negative motor speeds. The constraints define two parallel strips, whose intersection forms a paralellogram that defines the feasible regime of DC motor operation. All admissible combinations of motor torque and speed, consistent with the given armature current and voltage limits, lie within this paralellogram. The portions of the paralellogram extending beyond the no-load speed in each direction (ooC0o 0 and o4to 0 ) correspond to regenerative braking of the motor, which implies application of an external torque. Since no such tegrated Manufacturing 23 (2007) 563–579 torque is available in the context of CNC machine drive motors, the range of feasible torque/speed states is reduced speed-dependent acceleration limits, the axis speed v x always remains in the interval?C0v 0 ;tv 0 C138. Within the axis speed range v x 2eC0v t ;tv t T, the mini- mum and maximum axis acceleration limits are both fixed, and hence this is referred to as the constant limits regime for ARTICLE IN PRESS drive abc constant constant constant mixed constant constant mixed mixed constant mixed mixed mixed to indicate the no-load speed as the maximum motor speed, yielding the six-sided parallelogram shown in Fig. 1. The six-sided parallelogram defines three distinct DC motor speed ranges, each with distinct minimum and maximum torque limits, namely: C0T lim o 0 to o 0 C0o t pTpt T lim for C0o 0 popC0o t , C0T lim pTpt T lim for C0o t popto t , C0T lim pTpt T lim o 0 C0o o 0 C0o t for to t popto 0 . 3. Axis acceleration limits In high-speed machining [8,13,14] inertial forces may dominate cutting forces, friction, etc., especially for tool ω T Fig. 1. Left: the maximum current and voltage limits impose constant and speed-de (shaded) of feasible motor torque/speed values. Right: since the motors that of feasible torque/speed values is truncated to form a six-sided parallelogram. S.D. Timar, R.T. Farouki / Robotics and Computer-In paths of high curvature. Accounting for the axis inertias, the axis speeds and accelerations are proportional to the motor speeds and motor torques, respectively. Consider, say, the x-axis. If it has effective mass M x and is actuated by a drive motor through a ball screw of modulus K x (i.e., the linear axis velocity v x is related to the motor angular speed o by v x ?o=K x ), the axis acceleration correspond- ing to motor torque T is a x ?K x T=M x . Noting that the feedrate may be regarded as a vector of magnitude v and direction given by the unit path tangent t?et x ; t y ; t z T,we have v x ?t x v and the motor rotational speed is o?K x t x v. Hence, the torque limits derived above are equivalent to the x-axis acceleration limits C0 A x v 0 tv x v 0 C0v t pa x ptA x for C0v 0 pv x pC0v t , C0 A x pa x ptA x for C0v t pv x ptv t , C0 A x pa x ptA x v 0 C0v x v 0 C0v t for tv t pv x ptv 0 , e3T where v t is the axis transition speed, v 0 is the axis no-load speed, and we define A x ?K x T lim =M x . By virtue of the ω T pendent torque limits, respectively, forming a four-sided parallelogram CNC machine axes will not exceed the no-load motor speed, the region Table 1 The four possible combinations of acceleration-limited regimes for a 3-axis CNC machine (here a; b; c denotes any permutation of the axes x; y; z) Axis tegrated Manufacturing 23 (2007) 563–579 565 the x-axis. The axis speed ranges v x 2eC0v 0 ;C0v t T and v x 2etv t ;tv 0 T, for which one acceleration limit is fixed and the other is speed dependent, are called the mixed limits regimes for the x-axis. In the constant limits regime, the acceleration bounds may be written as a x A x , with a x ?C61. For the mixed limits regime, the acceleration bounds may be expressed in the form A x g x v 0 C0v x v 0 C0v t and C0g x A x , where g x ?C01 for v x 2eC0v 0 ;C0v t T—i.e., t x o0, and g x ?t1 for v x 2etv t ;tv 0 T—i.e., t x 40. Similar considerations apply to the y- and z-axis. During a path traversal, each axis operates within one of its acceleration limit regimes independently of the other axis, and each may switch between the acceleration limit regimes in accordance with variations in the tool path geometry and feedrate. Consequently, there are four possible combinations of acceleration-limited regimes among the x-, y-, z-axis (see Table 1). For a planar curve, ARTICLE IN involving motion of only two machine axes, there are three possible combinations: constant/constant, constant/mixed, and mixed/mixed. Each combination of acceleration limits incurs a specific analysis to compute the time-optimal feedrate. The case in which all axes are in the ‘‘constant’’ regime is covered by our earlier study [9], but cases involving one or more of the axes in the ‘‘mixed’’ regime have not been previously addressed. 4. Time-optimal feedrates Consider a path described by a degree-n Be′zier curve rexT? X n k?0 p k n k C18C19 e1C0 xT nC0k x k ; x2?0;1C138 (4) with control points p k ?ex k ; y k ; z k T, k?0; ...; n [15].Ifs denotes arc length measured along the curve, we define the parametric speed by sexT?jr 0 exTj? ds dx . The unit tangent and (principal) normal vectors and the curvature of (4) are defined by t? r 0 s ; n? r 0 C2r 00 jr 0 C2r 00 j C2t; k? jr 0 C2r 00 j s 3 (5) and, conversely, with s 0 ?er 0 C1r 00 T=s we may write r 0 ?st; r 00 ?s 0 tts 2 kn. (6) Now suppose we traverse the curve with feedrate (speed) specified by the function vexT. Since derivatives with respect to time t and the parameter x—which we denote by dots and primes, respectively—are related by d dt ? ds dt dx ds d dx ? v s d dx , the velocity and acceleration vectors at each point are given by v?_r?vt; a?€r? _vttkv 2 n. (7) The tangential component _vt of a vanishes if v?constant, while the normal (centripetal) component kv 2 n vanishes if k?0. The time derivative of the feedrate (the feed acceleration) is given in terms of x as _v?vv 0 =s. We wish to minimize the traversal time along rexT, starting and ending at rest, subject to acceleration limits of the form (3) and analogous expressions for the other machine axes. These requirements can be phrased in terms of the following optimization problem: min vexT T ? Z 1 0 s v dx (8) such that S.D. Timar, R.T. Farouki / Robotics and Computer-In566 A i;min pa i exTpA i;max for x2?0;1C138, Z?1C0 v t v 0 . Eq. (11) is a first-order, non-linear differential equation with variable coefficients. It may be written exclusively in terms of x as 00 0 C18C19 2 where i?x; y; z refers to each of the Cartesian components a x ; a y ; a z of a. As noted in Section 3, the axis acceleration bounds A i;min , A i;max are of the form C0A i ;tA i or A i g i v 0 C0v i v 0 C0v t ;C0g i A i . 4.1. Constant acceleration trajectories From the relations (5), (7), ss 0 ?r 0 C1r 00 , and _v?vv 0 =s, we may write a? vv 0 s 2 r 0 t v 2 s 3 esr 00 C0s 0 r 0 T. For a given curve rexT?exexT; yexT; zexTT the x-axis component (say) of the acceleration a is defined by a x ? q 0 2s 2 x 0 t q s 3 esx 00 C0s 0 x 0 T, (9) where we write q?v 2 , since it is convenient to work with the square of the feedrate (see [9] for further details). During an extremal acceleration phase under constant acceleration limits, one component of the acceleration is equal to plus or minus the corresponding bound, a condition that yields a linear differential equation for q. If x is the extremally accelerating axis, this equation admits a closed-form solution for the (squared) feedrate, namely q? s x 0 C16C17 2 eCt2a x A x xT, (10) where the integration constant C is determined by specifying a known point ex C3 ; qex C3 TT on the trajectory: C?ex 0 ex C3 T=sex C3 TT 2 qex C3 TC02a x A x xex C3 T. Further details of the solution method for (10) may be found in [9]. 4.2. Speed-dependent acceleration trajectories Consider the determination of the feedrate v when the x- axis (say) executes an extremal acceleration defined by a speed-dependent acceleration bound, of the form described above. The differential equation governing the feedrate under such circumstances is t x _vtkn x v 2 t A x Zv 0 t x vC0 g x A x Z ?0, (11) where we introduce the constant PRESS tegrated Manufacturing 23 (2007) 563–579 vv 0 t x x 0 C0 s s v 2 t A x Zv 0 svC0 g x A x Z s x 0 ?0. feedrate consistent with the axis constraints, and the range a min ex; vTpapa max ex; vT of possible feed accelerations at each feedrate v less than v lim exT. In the case of constant acceleration bounds on all axes, the acceleration constraints at each curve point x describe strips in the ev 2 ; aT plane, bounded by parallel line pairs. The intersection of these strips defines a parallelogram, whose interior constitutes the set of feasibleev 2 ; aTvalues, and whose right-most vertex defines v lim exT. For each feedrate v less than v lim exT, the upper parallelogram boundary defines the maximum feed acceleration a max ex; vT, and the lower parallelogram boundary defines the minimum feed acceleration a min ex; vT. We refer the reader to [9] for complete details. In the case of mixed acceleration bounds, either the lower or the upper constraint involves both v and v 2 ,as well as a, and is thus not describable by a linear relation in ARTICLE IN PRESS To obtain a closed-form integration of this equation, we note that vv 0 t x 00 x 0 C0 s 0 s C18C19 v 2 ? 1 2 s x 0 C16C17 2 d dx x 0 s v C18C19 2 . Hence, since g 2 x ?1, we obtain d dx x 0 s v v 0 C18C19 2 ?2 g x A x Zv 2 0 x 0 1C0g x x 0 s v v 0 C18C19 . Writing u?ex 0 =sTev=v 0 T, this gives u du dx ? g x A x Zv 2 0 x 0 e1C0g x uT, which is amenable to separation of variables, giving Z udu 1C0g x u ? g x A x Zv 2 0 Z x 0 dx. Noting again that g 2 x ?1, this can be integrated to obtain e1C0g x uTC0lne1C0g x uT? g x A x Zv 2 0 extcT, the integration constant c being determined from a known initial condition. We note that g x u?g x ex 0 =sTev=v 0 Tsatisfies 0pg x up1, since 0pv=v 0 p1, C01px 0 =spt1, and g x has the same sign as x 0 =s. Hence, the argument of the logarithm occurring above is between 0 and 1. Now let cekT be the transcendental function that is defined implicitly as the solution of the equation cekTC0lncekT?k. (12) By differentiating, we see that dc dk ?C0 cekT 1C0cekT , and hence the function cekTis monotone decreasing if its range is confined to 0pcekTp1. The corresponding domain is 1pkp1. Using the function c, we can write the feedrate explicitly in terms of the curve parameter x as vexT?g x v 0 sexT x 0 exT 1C0c g x A x Zv 2 0 exexTtcT C18C19C20C21 . We regard cekT as a basic transcendental function, of similar stature to the trigonometric or logarithmic func- tions. To use it in the context of real-time motion control, an efficient means to evaluate this function is required. Re-writing (12) in the form cekT?expeC0kTexpecekTT (13) yields the iteration sequence for cekTdefined by c r ?expeC0kTexpec rC01 T; r?1;2; ... (14) with a suitable starting approx