購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
附錄
英文翻譯資料
精密設(shè)計(jì):發(fā)展?fàn)顩r和趨勢(shì)
Design for Precision:Current Status and Trends
P.Schellenkens(2),N.Rosielle
H.Vermeulen,M.Vermeulen,S.Wetzels,W.Pril
Section Precision Engineering,Eindhoven Unversity of Technology,The Netherlands
摘要
回顧精密設(shè)計(jì)的狀況,包括現(xiàn)在的精密設(shè)計(jì)人員,都把可重復(fù)性放在首位。這里多位編者引用的各種設(shè)計(jì)規(guī)則、模式或者原則,對(duì)于在超精密機(jī)床和儀器中得到能再現(xiàn)的結(jié)果都是正確的。不同概念、系統(tǒng)和元件的建模和分析需要采用高級(jí)的設(shè)計(jì),或者使它充分有效。在分析上的花費(fèi)是值得的,這樣避免了制造出不完整的設(shè)計(jì)。但是,創(chuàng)造力在保證降低成本上更重要,它可以找出更好的辦法。在世界范圍內(nèi),精密設(shè)計(jì)人員遵守設(shè)計(jì)原則,但是他們以他們的創(chuàng)造力進(jìn)行挑戰(zhàn),以獲得思慮周到的設(shè)計(jì)。當(dāng)今,大部分精密機(jī)床、高級(jí)技術(shù)都用到補(bǔ)償,例如幾何誤差,有機(jī)床運(yùn)動(dòng)帶來(lái)的誤差或者熱引起的誤差。精密設(shè)計(jì)今后的發(fā)展要求納米甚至是亞納米位置戶測(cè)量精度,要求采用完整的控制和誤差補(bǔ)償系統(tǒng)的設(shè)計(jì)概念。
關(guān)鍵詞:設(shè)計(jì)原則和特征,預(yù)測(cè)設(shè)計(jì),精度,可再現(xiàn)性,重復(fù)性
致謝
作者要感謝以下的編者
K.Blaedel H.Van Brussel J.Bryan D.DeBra J.Van Eijk C.Evans
G.Goch R.Hocken P.McKeown V.Portman S.Sartori H.Spaan
C.Teague E.Thwaitr A.van Tooren D.Trumper R.Weill G.X.Zhang
介紹:
目前,在工業(yè)領(lǐng)域和研究中,都采用了各種方法來(lái)制造高精產(chǎn)品或融入了高精加工環(huán)節(jié)。這類(lèi)產(chǎn)品的制造依賴(lài)于一種高專(zhuān)化的科學(xué),叫做超精加工,超精加工以以下學(xué)科為基礎(chǔ)
1. 精密設(shè)計(jì)
2. 光學(xué)和機(jī)械測(cè)量學(xué)
3. 精密加工
這里所說(shuō)的精密設(shè)計(jì)是指包括材料、機(jī)械、電子、控制、熱力學(xué)、動(dòng)力學(xué)和軟件在內(nèi)的所有設(shè)計(jì)。也可以說(shuō)成是高精密機(jī)電設(shè)計(jì)。隨著機(jī)械儀器和產(chǎn)品高精度要求的迅速增長(zhǎng),高精度的設(shè)計(jì)也變得越來(lái)越重要的,如今,這種發(fā)展趨勢(shì)受到了計(jì)算機(jī)技術(shù)、數(shù)據(jù)處理和數(shù)據(jù)存儲(chǔ)技術(shù)發(fā)展的影響。這種加工方法始于1958年,集成電路剛問(wèn)世的時(shí)候。由于需要在一塊芯片上放置越來(lái)越多的晶體管[]所以要使用低至幾個(gè)納米的定位誤差的機(jī)器。例如,一種在一片矽板上用來(lái)定位內(nèi)部通信網(wǎng)絡(luò)網(wǎng)點(diǎn)的晶體分布器。這樣一種機(jī)器只有靠高度發(fā)展的設(shè)計(jì)和制造技術(shù)才能實(shí)現(xiàn)。同樣,高密度的光學(xué)記錄系統(tǒng)(DVD)的迅速發(fā)展是應(yīng)光盤(pán)控制系統(tǒng)的發(fā)展需要,這要求機(jī)床的誤差等級(jí)控制在納米范圍內(nèi)。機(jī)床中的軸承、發(fā)動(dòng)機(jī)和卷抽成型光學(xué)部件的制造精度維亞微米。為了適應(yīng)生產(chǎn)要求,應(yīng)大力發(fā)展亞微米精度甚至納米精度的機(jī)床。
在度量衡學(xué),高精度的測(cè)量已經(jīng)得到了發(fā)展,例如測(cè)量軟件、誤差建模、測(cè)量技巧和測(cè)量方法。為了測(cè)量零件和產(chǎn)品有足夠的精度,就要有精度維亞微米到納米的機(jī)床,既然現(xiàn)有的高精度的設(shè)計(jì)模型很難達(dá)到這種水平,就要求有新的設(shè)計(jì)技術(shù)。由于精密的可調(diào)測(cè)量機(jī)床、激光干涉儀和納米靈敏件STM和AFM的出現(xiàn),度量衡學(xué)作為一種基礎(chǔ)規(guī)律將面臨著非常大的發(fā)展,而且,很多分析軟件和誤差補(bǔ)償軟件業(yè)正在發(fā)展和實(shí)行。
精密加工用以實(shí)現(xiàn)產(chǎn)品的高形狀精度和高的表面質(zhì)量。該精度可達(dá)到納米等級(jí),所以,機(jī)械的設(shè)計(jì)和加工步驟都必須確定,包括加工步驟和機(jī)械的相互作用及刀具和工件間相互作用。用以實(shí)現(xiàn)精密加工的幾種技術(shù)有:鉆、磨、拉、,磨孔、拋光、離子和電子放射加工和化學(xué)加工。在[Gardner,1991]、[Nakazawa,1994]和[Taniguchi,1996]里可找到關(guān)于機(jī)床和機(jī)械技術(shù)的主要概況。這個(gè)領(lǐng)域的新發(fā)展則應(yīng)在納米范圍內(nèi)[Stix,1996]。
盡管在精密度量衡學(xué)和制造領(lǐng)域有很多有趣的例子,這篇論文已經(jīng)迷制造為主題。這個(gè)規(guī)律有著重要的歷史和幾種起源。盡管如此,有一點(diǎn)很清楚,在早期,天文學(xué)和度量衡學(xué)的發(fā)展對(duì)精密設(shè)計(jì)有著重要的影響。有關(guān)于以前的精密加工的發(fā)展在[Evans,1989]中有記載。19世紀(jì)出現(xiàn)了很多發(fā)明,特別是在設(shè)計(jì)方面。通過(guò)直線和圓弧加工機(jī)床獲得了很多相關(guān)的理論。許多精密機(jī)床的設(shè)計(jì)和制造都采用了運(yùn)動(dòng)性設(shè)計(jì)和人性化設(shè)計(jì)原則等先進(jìn)的設(shè)計(jì)原則。在20世紀(jì),由于各種測(cè)量?jī)x器和精密機(jī)床發(fā)展的刺激,設(shè)計(jì)的發(fā)展有了進(jìn)一步的上升。在美國(guó),一個(gè)精密機(jī)床設(shè)計(jì)的特別例子就是:一臺(tái)高精光學(xué)鉆床(LODTM)[Donaldson,1983],這里要特別提到的是設(shè)計(jì)者布賴(lài)恩,他設(shè)計(jì)了幾種機(jī)床,包括84英尺的(LDTM)[Teague,1989,1997].最近的新發(fā)展則是分子測(cè)量機(jī)床,如圖1.1所示。
圖1.1:分子測(cè)量機(jī)床
在歐洲,二十世紀(jì)50年代,飛利浦研究所(荷蘭)為國(guó)內(nèi)發(fā)展研制了幾種高精機(jī)床。那時(shí),Granfield精密加工組織和Rank Taylor Hobson發(fā)展了一種寬帶的高精機(jī)床,包括“納米”。在德國(guó)和瑞士,最早追溯到1875年,Zeiss和GSIP就制造了高精測(cè)量和制造機(jī)床。
日本也有很長(zhǎng)的高精機(jī)床和儀器的發(fā)展史。如今,日本在該領(lǐng)域扮演著主要角色,關(guān)于“日本的設(shè)計(jì)”在Taniguchi的書(shū)“Nanotechnology” [Taniguchi,1996]中有詳細(xì)介紹。例如,該書(shū)中可能提到CSSP。
所以我們可以得出一個(gè)結(jié)論:對(duì)于高精密度的機(jī)床和產(chǎn)品的需求在增長(zhǎng)。在[]中介紹了向高精度的發(fā)展趨勢(shì),在[Taniguchi,1983]和[Taniguchi,1996]中更特別介紹了機(jī)床精度。他著名的預(yù)測(cè)機(jī)床精度圖表如圖1.2所示。
圖1.2:Tanicuchi 預(yù)測(cè)的精密加工的趨勢(shì)
這張圖表很好的預(yù)測(cè)了現(xiàn)在的趨勢(shì)。精密工程的未來(lái)趨勢(shì)主要由IC技術(shù)發(fā)展趨勢(shì)決定,產(chǎn)生儲(chǔ)藏量、生物工程學(xué)、MEMS和用戶產(chǎn)品需要的信息。將會(huì)持續(xù)平穩(wěn)發(fā)展,所以精密機(jī)器的需要在將來(lái)會(huì)上升。
精密設(shè)計(jì)在未來(lái)的高精產(chǎn)品和機(jī)械的發(fā)展中扮演主要角色。利用總體設(shè)計(jì)方法在多種科學(xué)的設(shè)計(jì)組中可以實(shí)現(xiàn)這些設(shè)計(jì)。由于高精設(shè)計(jì)的費(fèi)用上升,設(shè)計(jì)必須放在首位。因此預(yù)測(cè)設(shè)計(jì)是必要的。這片設(shè)計(jì)總結(jié)了精密設(shè)計(jì)的基本信息,說(shuō)明了在精密加工這個(gè)重要領(lǐng)域中技術(shù)和將來(lái)的趨勢(shì)。
2.精密設(shè)計(jì)的元素
在精密儀器和機(jī)床的很多部分,要經(jīng)過(guò)反復(fù)的祥和作用來(lái)達(dá)到最后的精度。由于誤差會(huì)產(chǎn)生幾何學(xué)、運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)的影響,每一個(gè)部分都會(huì)影響到整體的精度。盡管實(shí)行了這些影響因素的相互作用在整個(gè)系統(tǒng)活動(dòng)中有重要作用,但這里主要是分離的介紹這些因素。
整篇論文的術(shù)語(yǔ):儀器和機(jī)器都用來(lái)表示一種儀器。度量衡學(xué)的術(shù)語(yǔ)根據(jù)“國(guó)際大眾度量衡學(xué)術(shù)語(yǔ)詞匯表”定義的。在精密設(shè)計(jì)中,相對(duì)于純粹的度量衡學(xué)、精密定位和機(jī)床刀具路徑,有關(guān)機(jī)器和儀器的更是關(guān)鍵信息。因此,下列給出的定義,是從上面提到的國(guó)際詞匯表的擴(kuò)大。
.加工精度:加工的實(shí)際數(shù)量等級(jí)的理想等級(jí)之間的差別,描述了質(zhì)量上的精度。
.加工誤差:與加工結(jié)果相聯(lián)系的參數(shù),描述可以合理的歸因于數(shù)量的等級(jí)的離中趨勢(shì)。
.精度:可以從只是裝置中讀出的指示度數(shù)的最小刻度。
.(加工結(jié)果的)重復(fù)性:在相同條件下成功加工相同量的結(jié)果間的差值。
.重現(xiàn)性:在不同條件下加工結(jié)果間的差別。
其他關(guān)于測(cè)量和制造機(jī)器的定義在[]和[]中分別給出,ISO準(zhǔn)則中給出了定量的描述。在布賴(lài)恩有關(guān)于“軸的旋度”的個(gè)別指導(dǎo)中描述了從20年代30年代末到現(xiàn)在的實(shí)際精密汽車(chē)轉(zhuǎn)向節(jié)和周的檢驗(yàn)?zāi)J絒Bryan,1996]。
2.2 幾何圖
在最初的機(jī)器和儀器設(shè)計(jì)中,幾何圖是設(shè)計(jì)者對(duì)于及其所應(yīng)具有的結(jié)構(gòu)的意向。在最初階段,幾何圖通常包括一些基本形狀。例如,用圓柱體或管子表示軸,用梁或者封閉的盒子結(jié)構(gòu)標(biāo)志支撐物,用平面或柱狀表示導(dǎo)向部分。但是,在實(shí)際中,這些理想的形狀不能被復(fù)制,由于受機(jī)床精度限制,直線永遠(yuǎn)不可能完全直,而且元也不可能完全圓。這里,仔細(xì)選擇加工工序是應(yīng)特別注意提高零件的精度。在加工過(guò)程中,越多運(yùn)動(dòng)的軸將導(dǎo)致更多的錯(cuò)誤,盡管額外的軸的微小運(yùn)動(dòng)可能會(huì)對(duì)幾何誤差有一定的補(bǔ)償。
精度不僅僅受肉眼的形狀誤差影響,也受肉眼偏差影響,例如表面光潔度。在整體加工中,這是很多應(yīng)用中的必須因素。在接觸關(guān)系中,磨對(duì)于表面光潔度的影響是明顯的。夾住的部分間的聯(lián)系對(duì)表面光潔度的影響就不太明顯,但是當(dāng)剛度、阻尼、磁滯和熱傳導(dǎo)率和熱擴(kuò)散型等性質(zhì)相關(guān)時(shí)就是必需的了。幾何圖不僅在加工過(guò)程中修改,如果沒(méi)有足夠的隔離(例如隔振、隔熱),幾何圖就會(huì)受環(huán)境影響,例如,大部分材料的元件,在溫度變化影響下的膨脹和變形,對(duì)于未加封的的自然花崗巖,它結(jié)構(gòu)的形狀取決于水汽的進(jìn)入。其他一些影響幾何圖的因素有:振動(dòng)、電器和磁場(chǎng)。很多材料的使用壽命取決于空間的變化。
同樣介紹了非理想的形狀,因?yàn)閷?shí)際上機(jī)器時(shí)有很多零部件裝配而成的。這里,對(duì)形式和力的接近的解釋和單塊結(jié)構(gòu)和用螺釘或膠合的裝配結(jié)構(gòu)間的選擇的考慮是必要的。在裝配時(shí),零部件可以用非常精確的特殊機(jī)床加工[],盡管在接觸面的滯后作用可以會(huì)對(duì)整個(gè)在現(xiàn)性產(chǎn)生消極影響。在傳統(tǒng)形式中,對(duì)于閉環(huán)裝配部件要有窄的公差,否則會(huì)產(chǎn)生反接力,在錯(cuò)誤測(cè)量情況下,就會(huì)在裝配時(shí)引入搞得不明確的壓力。力的封閉結(jié)構(gòu)從另一方面解決了這個(gè)問(wèn)題,它采用靜態(tài)聯(lián)系方法,例如運(yùn)動(dòng)學(xué)的、半運(yùn)動(dòng)學(xué)的[]或者未運(yùn)動(dòng)學(xué)的[]設(shè)計(jì)聯(lián)系,因此,大大減小了幾何形狀誤差,甚至在力封閉結(jié)構(gòu)中,一些幾何誤差,例如:導(dǎo)向軸方形誤差和平面誤差將會(huì)影響整個(gè)精度。但是這些誤差都是可以減小的,而且有可能采用軟件補(bǔ)償來(lái)減少。
由于機(jī)器的機(jī)械結(jié)構(gòu)的剛度有限,所以幾何位置在有載荷的情況下就會(huì)發(fā)生變化。特別是黨在和產(chǎn)生的位置和尺寸的變化時(shí),將嚴(yán)重的影響機(jī)器的工作。當(dāng)有了正確的模型,這些誤差都可以預(yù)測(cè)和彌補(bǔ)[]。
另一個(gè)關(guān)系到幾何圖的問(wèn)題是:工件的定位。對(duì)于加工和測(cè)量機(jī)床,工件的定位必須保證在夾具內(nèi)不產(chǎn)生變形。同時(shí),工件必須牢固的固定在機(jī)床的框架或工作臺(tái)上,而且,特別提到的是:在加工時(shí),工件的熱膨脹不能產(chǎn)生過(guò)大的壓力。關(guān)系到定位問(wèn)題的是:在高精密儀器重要是應(yīng)傳感器的襯墊物。這就是運(yùn)動(dòng)的和半運(yùn)動(dòng)的設(shè)計(jì)重點(diǎn)。
2.3 運(yùn)動(dòng)學(xué)
機(jī)床往往不是靜止的,用運(yùn)動(dòng)學(xué)關(guān)系來(lái)描述就是:不同的部分有不同的運(yùn)動(dòng)。這些結(jié)構(gòu)和機(jī)構(gòu)的數(shù)學(xué)描述之描繪了理論發(fā)生什么,只基于理論長(zhǎng)度、理論位置和理論圓弧的。但是,在實(shí)際中,這些因素都是在一定精度下保證的,因此,在實(shí)際的形式、速度和加速度等細(xì)節(jié)方面與理想的形式有所不同。
在現(xiàn)代機(jī)床中,位置是由多個(gè)機(jī)械部分聯(lián)合產(chǎn)生的,例如,侍服控制系統(tǒng)中的促動(dòng)器和傳感器。促動(dòng)器的公路和速度、傳感器分析、控制方法和機(jī)械重現(xiàn)性等因素共同決定了規(guī)定方法的精度。在多于一根軸被控制的情況下,軸的同步性是影響精度的另一因素。例如,在銑圓弧外形時(shí),要同時(shí)控制兩個(gè)正交軸。
2.4 動(dòng)力學(xué)
事實(shí)上,機(jī)床不是靜止的,包含有多個(gè)加速部分,意味著在加工過(guò)程中動(dòng)力學(xué)效應(yīng)將起到重要的作用。一個(gè)將相對(duì)位置不確定的加速度影響減到最小的方法是選擇合適的輪廓,例如,在第二引出物中不包含突漲的曲率,例如,用傾斜的正弦來(lái)代替拋物線。防止振動(dòng)和錯(cuò)誤運(yùn)動(dòng)同樣可以有效的減少動(dòng)力位置誤差。零部件本身就可以按最小受力設(shè)計(jì)。若零部件是旋轉(zhuǎn)的,對(duì)稱(chēng)結(jié)構(gòu)就有利于減少不平衡,同時(shí)全部的慣性的都可以減小,直線運(yùn)動(dòng)時(shí),應(yīng)保持質(zhì)量小,并且應(yīng)盡可能靠近軸驅(qū)動(dòng)。
另外一個(gè)決定機(jī)床對(duì)動(dòng)力影響的因素是剛度。一般為了減小受力、增大剛度,不僅跟材料的質(zhì)量和種類(lèi)有關(guān),而且和分布也有關(guān)系。通常動(dòng)力障礙有外部產(chǎn)生,例如地板和聲音的振動(dòng)。這些情況下,剛度、質(zhì)量比對(duì)于減小輸入相應(yīng)是必需的。是機(jī)床和障礙隔離可以直接減小輸入。
3. 設(shè)計(jì)原則
高精度機(jī)床的設(shè)計(jì)要經(jīng)過(guò)很多人的分析。Pollard在他的“Cantor沿江”中描述了科學(xué)儀器的機(jī)械設(shè)計(jì)[Pollard,1922]。Loewen列出了主要的原理[Loewen,1980]。McKeown在[McKeown,1986,1987,1997]中定義了“十一條原理和技術(shù)”。Teague和Evans說(shuō)明了基本概念,發(fā)表了12個(gè)“精密儀器模型”[Teague,1989-1997]。基于這些調(diào)查,總結(jié)了第三和第五部分。
3.1 Abbe和Bryan原理
Abbe原理在1890年的[Abbe,1890]第一次發(fā)表:測(cè)量?jī)x器一般是用來(lái)測(cè)量在作為附注的比例尺的延伸部分刻度的一條直線。這個(gè)原理也叫做調(diào)準(zhǔn)原理[Rolt,1929],“Abbe比較儀原理”[Reindl,1967]和“機(jī)械設(shè)計(jì)和尺寸度量第一原理”[Bryan,1979c]。對(duì)于不能直線設(shè)計(jì)的情況重新說(shuō)明,Bryan定義了一條綜合Abbe原理:“位移測(cè)量系統(tǒng)所測(cè)量的位移的功能點(diǎn)應(yīng)在同一條直線上。如果做不到這一點(diǎn),那么轉(zhuǎn)變位移的滑動(dòng)方法必須不受角度限制,或者角度數(shù)據(jù)必須作為Abbe原理計(jì)算結(jié)果的補(bǔ)償。
另一個(gè)測(cè)量基本原理是Bryan定理[Bryan,1979a],是這樣定義的:“直線測(cè)量系統(tǒng)所測(cè)量的直線的功能點(diǎn)應(yīng)在同一條直線上?!比绻皇?,那么轉(zhuǎn)變測(cè)量的滑動(dòng)方法必須不受角度限制,或者角度數(shù)據(jù)必須作為計(jì)算補(bǔ)償。
Vermeulen研制了一種3D-CMM系統(tǒng)(如圖3.1所示),在該系統(tǒng)中,使用中間體(A和B),就可以在水平中間平面內(nèi)在三個(gè)方向上避免產(chǎn)生Abbe誤差。[Vermeulen,1998]。這臺(tái)機(jī)床也適用于Bryan原理,使機(jī)床的直線誤差不那么靈敏。
圖3.1:2D-CMM多自由度分析Abbe和Bryan原理
3.2 運(yùn)動(dòng)學(xué)設(shè)計(jì)
Maxwell是這樣描述運(yùn)動(dòng)學(xué)設(shè)計(jì)的:“儀器的各個(gè)部分是固體的,但不是固定的。如果固體部分受到多于六個(gè)方向的力時(shí),它將產(chǎn)生內(nèi)應(yīng)力,并且會(huì)受力變形,但是若不采用非常精確的微米測(cè)量,是無(wú)法確定的[Maxwell,1890]。Lord Kelvin設(shè)立的劍橋科學(xué)儀器就是依據(jù)該設(shè)計(jì)理論,以達(dá)到高精度、低成本。GSIP廣泛的應(yīng)用該原理,特別是在度量?jī)x器方面。Pollawd強(qiáng)調(diào)了在儀器裝置中,相對(duì)于一般的機(jī)床刀具設(shè)計(jì)的重要性,這不僅僅對(duì)使用者和減小變動(dòng)有意義,也是對(duì)于經(jīng)濟(jì)加工而言[Pollard,1922] [Pollard,1929-1951]。對(duì)于當(dāng)今精密加工運(yùn)動(dòng)學(xué)設(shè)計(jì)的重要性在[Blanding,1992]中有詳細(xì)地說(shuō)明。MeKeown在他的“十一條原理”中也強(qiáng)調(diào)了它的重要性。Teague把它作為他的模型的一部分。還有一位不那么世界聞名的是Van der Hoek,從1962年到1985年,它同時(shí)是飛利浦電器的員工和恩加芬工業(yè)大學(xué)的教授。他的演講稿包括200個(gè)看起來(lái)相對(duì)較差的設(shè)計(jì)例子,在這些例子中,運(yùn)動(dòng)學(xué)設(shè)計(jì)是解決問(wèn)題的關(guān)鍵。[Hoek,1962-1986],[ Hoek,1985-1989]。其他一些介紹運(yùn)動(dòng)學(xué)設(shè)計(jì)的書(shū)有[Slocum,1992],[Smith,1992],[Nakazawa,1994]和[Koster,1996]。
運(yùn)動(dòng)學(xué)設(shè)計(jì)是從數(shù)學(xué)發(fā)展來(lái)的,它多少有些理想化,例如:固定不動(dòng)的機(jī)體、筆直的線條、完美的圓和“點(diǎn)接觸”等等。盡管如此,由于在原理上是正確的,所以這仍是機(jī)械設(shè)計(jì)的一個(gè)良好開(kāi)始。運(yùn)動(dòng)學(xué)設(shè)計(jì)的基礎(chǔ)是非常重要的,一般都采用波形管[Debra,1998]。圖3.2給出了一些確定一個(gè)自由度的例子。最典型的解決方法是利用一根細(xì)桿(如圖3.2a)。由于桿的長(zhǎng)度有限,在被限制的方向上,向一邊的位移就被限制了。采用折疊的兩片板就克服了以上的缺點(diǎn),并可達(dá)到相同的功能(圖3.2b)。圖3.2c中給出了另一種可選擇的方法,它包括了四根桿。
圖3.2:限制單自由度運(yùn)動(dòng)
圖3.3給出了限制直線運(yùn)動(dòng)中兩個(gè)自由度的例子??赏ㄟ^(guò)兩個(gè)細(xì)桿(圖3.3a和3.3b)實(shí)現(xiàn)或者利用一個(gè)鉸接的金屬板。
限制兩個(gè)直線自由度和一個(gè)旋轉(zhuǎn)自由度,例如,采用三根桿(圖3.4a和b)或者采用普通的金屬板(圖3.4c)。
圖3.3 限制兩個(gè)自由度的運(yùn)動(dòng)
圖3.3:限制兩個(gè)直線自由度
利用這些基本元素的組合,可制造運(yùn)動(dòng)機(jī)構(gòu)或夾具。圖3.5給出了一個(gè)平面定位的例子。采用三塊鉸接金屬片限制平面的六個(gè)自由度,熱中心在與鉸接金屬片的中垂線交點(diǎn)。
圖3.5:限制六自由度和熱中心
圖3.6示出xyθ工作臺(tái)如何通過(guò)三塊折疊金屬片定位.
圖3.6:利用三塊折疊金屬的xyθ工作臺(tái)
圖3.7給出了一個(gè)運(yùn)動(dòng)學(xué)設(shè)計(jì)的實(shí)例:運(yùn)動(dòng)支撐.利用六個(gè)定位支撐表面的標(biāo)準(zhǔn)模型利用在彈性鉸接旁邊讓表面容易彎取來(lái)得到提高.[Schouten,1997]。利用這種方法,當(dāng)接觸剛度和表面正交時(shí)的摩擦只是輕微的減小時(shí),沿表面的摩擦了大大減小。由于剛度和力的比增大,遲滯(5.1部分)從標(biāo)準(zhǔn)的無(wú)鉸接模型的0.42減小到新模型的0.03μm.
圖3.7:利用TC的系統(tǒng)動(dòng)力支承
3.3 熱循環(huán)
熱循環(huán)的定義是:“在溫度變化時(shí),一條經(jīng)過(guò)決定具體部件間相對(duì)位置的機(jī)械部件集合的路徑,原則上,熱循環(huán)應(yīng)盡量減小,以減小空間熱斜率的影響。機(jī)床熱循環(huán)中的熱膨脹又通過(guò)兩種方法:改變機(jī)床零件的有效長(zhǎng)度或選擇合適的熱膨脹系數(shù)。定位的點(diǎn)和軸,可通過(guò)建立熱中心來(lái)選擇,如圖3.5所示。盡管熱膨脹系數(shù)在0.5×10-6oC內(nèi)才可測(cè)得[Breyor,1991],但熱膨脹的影響可通過(guò)測(cè)量不同溫度下零件的膨脹程度[Kunzmann,1988]和選擇合適的定位點(diǎn)建立相等的熱長(zhǎng)度來(lái)減小。
為了獲得在空氣調(diào)節(jié)裝置大廳中0.5/day和在隨氣候變化的小屋中0.1/day的熱穩(wěn)定性還是個(gè)問(wèn)題[Breyor,1991]。熱源被限于機(jī)床內(nèi)部或外部會(huì)導(dǎo)致機(jī)床溫度外形的變化。由于相同的機(jī)床元件有不同的熱時(shí)間,這可能會(huì)導(dǎo)致在熱循環(huán)中的不等熱膨脹(見(jiàn)5.5部分)。因此,Donaldson強(qiáng)烈推薦,并在它的關(guān)于機(jī)床刀具[Donaldson,1980]的出版物中作為一個(gè)原理。就是:在熱源處把熱量帶走。Wetzels曾利用一個(gè)整體熱源來(lái)檢驗(yàn)一個(gè)人機(jī)床穩(wěn)定性問(wèn)題。移開(kāi)熱源之后,利用一條規(guī)則可以減小熱趨勢(shì)。
3.4結(jié)構(gòu)鏈
根據(jù)[ANSI,1992],結(jié)構(gòu)鏈定義為:“機(jī)械零件的裝配,以保持指明的部件間的相對(duì)位置,一對(duì)典型的指明的部件是刀具和工件:結(jié)構(gòu)鏈包括主軸、軸承和軸套、導(dǎo)軌和機(jī)架、發(fā)動(dòng)機(jī)和刀具、夾具?!睆陌l(fā)動(dòng)機(jī)到響應(yīng)點(diǎn)的傳動(dòng)路徑中全部機(jī)械零件和連接處,例如,最尾受動(dòng)器(切削刀具或探針)或重力中心,必須具有高剛度以避免在改變載荷情況下的變形。機(jī)床或儀器的設(shè)計(jì)包括一個(gè)或多個(gè)結(jié)構(gòu)鏈。
在一個(gè)認(rèn)為是好的結(jié)構(gòu)鏈設(shè)計(jì)中必須的是連續(xù)和平行路徑的分離。在連續(xù)路徑上,剛度不能突然變化。連續(xù)路徑的改進(jìn)方法是:通過(guò)把材料從最穩(wěn)定的部分轉(zhuǎn)移,從使最柔性的部分剛度增加。平行路徑的改進(jìn)方法則相反:改進(jìn)剛度最大的部分——為了系統(tǒng)質(zhì)量相等——到更柔性的平行路徑。
由于物理限制,一個(gè)封閉鏈系統(tǒng)的測(cè)量系統(tǒng)不可避免的在離最尾受動(dòng)器一定距離處攝制。除了友好的結(jié)構(gòu)鏈設(shè)計(jì)外,測(cè)量系統(tǒng)和最尾受動(dòng)器間的路徑必須盡可能是剛度大,以減小偏差,例如,減小路徑長(zhǎng)度,叫做“測(cè)量歡”[Kunzmann,1996]。
3.4度量結(jié)構(gòu)
度量結(jié)構(gòu)是誤差測(cè)量的參考結(jié)構(gòu),獨(dú)立于機(jī)床基礎(chǔ),例如作用在度量系統(tǒng)上的外力必須是不變的[Bryan,1979b]。DeBra建議把度量看作是綜合原理的一個(gè)例子,如“分離結(jié)構(gòu)”原理。[DeBra,1998]。實(shí)際上,力和位置信息路線是分離的概念,存在于旋轉(zhuǎn)平面的設(shè)計(jì)中,如圖5.8[Philips,1994]。
在[Teague,1989-1997]中討論了度量機(jī)構(gòu)的歷史,以解決機(jī)床零件的變形問(wèn)題。第一次度量結(jié)構(gòu)的例子是在很早以前的Rogers-Bond宇宙比較儀中[Rogers,1883]。最近的例子就是Hocken的測(cè)量機(jī)械中的NIST和交互時(shí)間標(biāo)準(zhǔn)比較儀中的NPL及在'Ultimat'CMM系統(tǒng)中的LLNL[Bryan,1979b],84年的SPDTM[Bryan,1979a]和LODTM[Donaldson,1980],在Mckeown的Cranfield精密機(jī)床(見(jiàn)圖3.8)和Wills-Moren[Wills-Moren,1982]和[Wills-Moren,1989]。
[Teague,1989-1997]建議把度量結(jié)構(gòu)盡可能的做小一些,以減小環(huán)境影響。[Bryan,1979b]建議要建立零漂移度量機(jī)構(gòu)或利用溫度控制度量結(jié)構(gòu)的支撐面需和機(jī)床基體的偏差中和軸在同一位置。
3.6動(dòng)力補(bǔ)償
通過(guò)把正確的機(jī)械設(shè)計(jì)和閉環(huán)控制結(jié)合起來(lái),可實(shí)現(xiàn)增大運(yùn)動(dòng)速度、精度和運(yùn)動(dòng)適應(yīng)性。典型的例子有:壓縮光盤(pán)播放器,高級(jí)CNC銑床和車(chē)床和快速零件裝配機(jī)床。隨著伺服定位控制裝置的發(fā)展,判斷傳動(dòng)裝置是如何傳遞力的,以抵消慣性引起的力,例如刀具或者測(cè)量力、摩擦力等。如“十一條原理”[McKeown,1986,1987,1997]中闡述的,動(dòng)力應(yīng)該安裝在直接驅(qū)動(dòng)軸的位置。如果不行,由軸引起的偏差——叫做動(dòng)力補(bǔ)償——包括機(jī)床導(dǎo)軌的動(dòng)差。如果發(fā)動(dòng)機(jī)和測(cè)量軸在旋轉(zhuǎn)中心的同一側(cè),那么,導(dǎo)軌在它的可控性下合成旋轉(zhuǎn)的影響會(huì)減小。
3.7力補(bǔ)償
3.7.1質(zhì)量補(bǔ)償
在很多3D-CMM'S中都用到了直立鍛床。為了避免鍛床的垂直導(dǎo)軌動(dòng)力系統(tǒng)承受連續(xù)的力,就會(huì)用到力補(bǔ)償,因此要除去馬達(dá)中不期望的熱量浪費(fèi)??赏ㄟ^(guò)和多途徑得到連續(xù)的力,例如利用附加的質(zhì)量,但以動(dòng)力觀點(diǎn)來(lái)看是不宜的??扇〉氖窃趬毫蛘婵蘸汀斑B續(xù)比率突變”下采用磁場(chǎng)作用,例如Tensators[Tensators,1997],[RosieUe,1998]。依靠滑動(dòng)的方法和可容許力的變化規(guī)范,一種形式的質(zhì)量補(bǔ)償比另一種更適合。一種減小Coulomb摩擦的控制方法:質(zhì)量分離,應(yīng)用于很多GSIP設(shè)計(jì)的高精密機(jī)床。
3.7.2反作用補(bǔ)償
由于質(zhì)量和機(jī)床固定部分的支撐剛度有限,驅(qū)動(dòng)力引起的反作用力引起這些固定部分的運(yùn)動(dòng)[ramkens,1994],[ramran,1997].由反作用力引起的機(jī)床機(jī)架的震動(dòng)在高頻直接驅(qū)動(dòng)情況下更加重要,例如:快速刀具伺服切削[pattersam.1995]和切削非旋轉(zhuǎn)的對(duì)稱(chēng)表面[ rankens.1997]最常見(jiàn) 的 減少幾架震動(dòng)的 方法有 :提高剛度和 機(jī)架質(zhì)量或增加振動(dòng)阻尼。Rankers在中提到了更多的方法。第一個(gè)例子是:在載荷和機(jī)架間相對(duì)的方向上增加質(zhì)量。第二個(gè)例子是:同時(shí)發(fā)生的反作用力可以通過(guò)不需要嚴(yán)格定位精度要求的第二個(gè)發(fā)動(dòng)機(jī)來(lái)抵消。
3.7.3剛度補(bǔ)償
以彈性元件為基礎(chǔ)的儀器和機(jī)械由優(yōu)勢(shì):實(shí)際的反沖和摩擦不會(huì)引起實(shí)質(zhì)上的運(yùn)動(dòng)。彎曲部分的尺寸是以允許的壓力和嚴(yán)格限制定位運(yùn)動(dòng)的可制造性和必要性的合適的振動(dòng)為基礎(chǔ)的。但是,振動(dòng)被材料的彈性極限何、彈性材料的剛度極限限制,產(chǎn)生和誤差成直線比例的相反的力。在這些例子中,驅(qū)動(dòng)力變得太大而不能控制。他通過(guò)傳動(dòng)裝置要求的垂直尺寸和作為機(jī)床結(jié)構(gòu)障礙的熱量的產(chǎn)生,彎曲部分作為一種有選擇的設(shè)計(jì)可以省略或者清除不希望得到的力的影響這是對(duì)被動(dòng)元件的最好做法的明顯理由。提到的這種典型的方法被作為建立“負(fù)剛度”提到通過(guò)包括彎曲部分和旋轉(zhuǎn)式直線彎曲階段固定聯(lián)給的裝置,以獲得接近于零件剛度的設(shè)計(jì),這個(gè)問(wèn)題就可以在增加復(fù)雜性的代價(jià)下得到解決。 Van eijk給出了些建立負(fù)剛度的例子[eijk,1985].
3.8對(duì)稱(chēng)
在[teagne,1989-1997]重推薦在機(jī)床元件的最大范圍內(nèi),盡可能加入對(duì)稱(chēng)元件。例如質(zhì)量和力的分布或者是剛度。包括全部的儀器和環(huán)境因素。在設(shè)計(jì)、制造、裝配和加工一個(gè)精密儀器過(guò)程中,要權(quán)衡解決不對(duì)稱(chēng)所帶來(lái)的問(wèn)題在對(duì)對(duì)稱(chēng)進(jìn)行改動(dòng)。為了避免熱不對(duì)稱(chēng),包括機(jī)床元件的有效變形,應(yīng)讓熱膨脹的熱從中作為對(duì)稱(chēng)軸。[]。為了解決由重力引起水平面不對(duì)稱(chēng)的影響,機(jī)床可用垂直裝配,例如LODTMCDondson,1983]三次對(duì)稱(chēng)由四面體結(jié)構(gòu)很好的實(shí)現(xiàn)了,例如:NPL的lindsey設(shè)計(jì)的tetraform[Lindsey,1998],[slocum,1992],[Corbett,1997].他的支持人hocken也報(bào)道了一些對(duì)稱(chēng)反對(duì)者[ hocken,1995].例如,振動(dòng)能量不會(huì)由于不對(duì)稱(chēng)設(shè)計(jì)而減小,實(shí)際上經(jīng)常會(huì)增大。
3.9重現(xiàn)性
根據(jù)第二部分給出的定義,重現(xiàn)性是指在相同的情況下機(jī)床的工作結(jié)果相同。機(jī)床工作可以使是cmm上的測(cè)量工作也可以是機(jī)床刀具加工產(chǎn)品的工作。[bryan,1993]提出決定論共參考::在自動(dòng)控制下機(jī)床決定論地執(zhí)行,作為設(shè)計(jì)、制造、和運(yùn)行測(cè)試的正確的基本原則,基本理論是:自動(dòng)刀具和測(cè)量機(jī)床安全像恒星一樣重現(xiàn),在我們能夠理解和控制的范圍內(nèi)準(zhǔn)許原因和影響關(guān)系。他們的門(mén)不是隨機(jī)或是可能停電,任何事情的發(fā)生都是有原因的。而且原因簡(jiǎn)單的可以通過(guò)普通的判斷力、好的度量和合理的資源投資而解決。事實(shí)上,重現(xiàn)性要求:
.應(yīng)用靜態(tài)的已知高剛度設(shè)計(jì),在元件連接時(shí),減小滯后現(xiàn)象
.減小摩擦,增大軸承的系統(tǒng)剛度
.優(yōu)化驅(qū)動(dòng)和控制系統(tǒng)
.考慮傳熱器的質(zhì)量,包括傳熱器的配件
.注意熱穩(wěn)定的設(shè)計(jì)和對(duì)振動(dòng)的足夠隔離
重現(xiàn)性對(duì)于仿真是必要的(第四部分),儀器的模型越相近,仿真就越好,軟件的誤差補(bǔ)償范圍就越大(第六部分)。這里Bryan引證了[Loxham,1970]。根據(jù)Kidder(LLNL)和Hocken,[他總結(jié)了對(duì)于典型物理定理的決定論本質(zhì)的七個(gè)例外Hocken[Bryan,1993]。這些里外都是針對(duì)與分子和原子質(zhì)量級(jí)的,對(duì)于制造領(lǐng)域毫無(wú)實(shí)際意義。
4.測(cè)量設(shè)計(jì)的建模
如在第一部分中所提到的,在不遠(yuǎn)的未來(lái),對(duì)于超精密機(jī)器的需求將上漲,于是,在該領(lǐng)域設(shè)計(jì)方法將會(huì)發(fā)生明顯的改變。對(duì)精密機(jī)床運(yùn)動(dòng)的完全理解對(duì)于元件尺寸誤差的預(yù)見(jiàn)是必要的。通過(guò)把所有的元件誤差全部加在一個(gè)誤差聚存中。機(jī)床的設(shè)計(jì)者就可以預(yù)知所有機(jī)床的精度。[Blaedel,1998],[Thompson,1989]。在最近出版的一本書(shū)‘Nanotechnogy’[Taniguchi,1996]中給出了當(dāng)含機(jī)械和加工的很好概括。由于越精密的機(jī)器的發(fā)展一般來(lái)說(shuō)是非常昂貴的,所以“準(zhǔn)時(shí)生產(chǎn)”設(shè)計(jì)變得越來(lái)越重要。盡管設(shè)計(jì)構(gòu)思的全面分析非常昂貴,三是通過(guò)設(shè)計(jì)階段早期的系統(tǒng)的分析可以省下一大筆錢(qián)。機(jī)場(chǎng)和儀器的精度主要有以下五種誤差源產(chǎn)生:運(yùn)動(dòng)偏差,熱偏差,靜態(tài)誤差,動(dòng)力誤差和控制系統(tǒng)執(zhí)行誤差(如圖4.1)。
從設(shè)計(jì)規(guī)范開(kāi)始,可以通過(guò)理論設(shè)計(jì),隨后會(huì)隨這個(gè)理論設(shè)計(jì)進(jìn)行建模、方針和改進(jìn)。然后可以畫(huà)出流程圖,表示出建模和仿真過(guò)程,同時(shí)有必要核對(duì)地否與功能特性相符。利用運(yùn)動(dòng)模型來(lái)判斷運(yùn)動(dòng)誤差的影響,F(xiàn)EM部分建??梢杂脕?lái)分析熱機(jī)械和靜態(tài)誤差方面,包括熱膨脹和擴(kuò)散的剛度和強(qiáng)度??衫煤?jiǎn)單彈性理論和熱理論基礎(chǔ)計(jì)算進(jìn)行必要的驗(yàn)證。機(jī)床系統(tǒng)的動(dòng)力方面包括慣性和剛度影響需要謹(jǐn)慎分析。同時(shí),控制系統(tǒng)和機(jī)床系統(tǒng)必須進(jìn)行調(diào)整,以使閉環(huán)系統(tǒng)具有良好的動(dòng)力狀態(tài)。圖4.1說(shuō)明了設(shè)計(jì)是一個(gè)反復(fù)的過(guò)程。設(shè)計(jì)過(guò)程進(jìn)行得越深入,就可以獲得更詳細(xì)的模型和仿真。以下簡(jiǎn)短的介紹了最重要的分析過(guò)程和方法。
4.1運(yùn)動(dòng)分析
通過(guò)優(yōu)化一個(gè)精密機(jī)床或測(cè)量?jī)x器的設(shè)計(jì)理論,誤差模型方法主要在過(guò)去二十年發(fā)展起來(lái)的,該模型可用于預(yù)測(cè)運(yùn)動(dòng)誤差。[Soons,1993],[Krulewich,1995a,b]。這些建模技術(shù)是以估計(jì)運(yùn)動(dòng)誤差的影響為基礎(chǔ)的,例如直線車(chē)廂、旋轉(zhuǎn)平面和主軸。成功的應(yīng)用矩陣參數(shù)預(yù)測(cè)和補(bǔ)償彎曲偏差最早出現(xiàn)在1972年[Wills-Moren,1982]。對(duì)于每根軸,運(yùn)動(dòng)誤差都可以通過(guò)矢量法描述,直線誤差矢量:T,旋轉(zhuǎn)誤差矢量:R,車(chē)廂在結(jié)構(gòu)鏈固定位置的旋轉(zhuǎn)的影響可通過(guò)外部矢量:旋轉(zhuǎn)矢量:R和位置矢量P計(jì)算,這些矢量在Cartesion調(diào)節(jié)系統(tǒng)中有定義。這里,調(diào)節(jié)系統(tǒng)的起源和讀取屬于軸的矢量iR的標(biāo)尺位置的傳感器連接,包括了機(jī)床軸之間矩陣誤差的總和。指定機(jī)床位置的整個(gè)動(dòng)力誤差可以通過(guò)誤差向量描述,可通過(guò)所有軸的誤差來(lái)計(jì)算[Spaan,1995]:dP(x,y,z)=(iR*iP+iT)。
動(dòng)力建模必須符合機(jī)床的結(jié)構(gòu)鏈,例如,可以從共建位置開(kāi)始,經(jīng)過(guò)所有的元件和聯(lián)結(jié),在探針和刀具位置結(jié)束。旋轉(zhuǎn)工作臺(tái)和主軸可以和導(dǎo)軌箱采用相同的方法。在[Spaan,1995]中,建模技術(shù)應(yīng)用于五軸的銑床。這種相對(duì)簡(jiǎn)單的方法迅速的給予設(shè)計(jì)者關(guān)于針對(duì)結(jié)構(gòu)鏈中變化的設(shè)計(jì)方法的影響信息。
另外一個(gè)建模方法:用齊次變形矩陣描述動(dòng)力誤差,同樣也得到廣泛的應(yīng)用。這里,誤差參數(shù)iRj,iTj是矩陣中的元素[Paul,1981],[Soons,1993],[Portman,1997]。隨后,介紹了高精密度設(shè)計(jì)所要求的第二種影響因素。
4.2熱機(jī)械分析
如眾多便這說(shuō)明的那樣,熱效應(yīng)對(duì)精密機(jī)床和儀器的偏差有重要的影響[Yoshida,1967],[Camera,1976],[Attia,1979],[Blsamo,1990],[Cresto,1991],[Schelle Kens,1992]。在該領(lǐng)域Bryan給出了詳細(xì)的概括,在1968年和1990年給CIRP大眾裝配中的主要論文中[Bryan,1968],[Bryan,1990]。
大體來(lái)說(shuō),機(jī)床的溫度外形可有一個(gè)不固定的結(jié)構(gòu)T=T(x,y,z,t)表示。由于這應(yīng)用了空間和溫度梯度與機(jī)械熱量 的結(jié)合,機(jī)床的形狀和尺寸會(huì)發(fā)生變化。特別是不固定因素會(huì)使誤差很難估計(jì)。因此,大多數(shù)都嘗試描述固定的狀態(tài)T=T(x,y,z,)[Soons,1993],[Trapet,1997a]。這里,作為另一種方法,就無(wú)外力作用下的變形(否則建模很困難)而言,誤差建模主要基于熱循環(huán)中(大的)機(jī)床零件的膨脹和彎曲。[Boley,1960],[Trapet,1997a]。計(jì)算完膨脹和變形后,在4.1節(jié)中談到的動(dòng)力模型可應(yīng)用于計(jì)算熱誤差向量dP(T(x,y,z,))。在[Soons,1993]中,這個(gè)方法成功的應(yīng)用于銑床,而且是熱誤差減小70﹪。
由于機(jī)床無(wú)可避免的有內(nèi)部熱源,有時(shí)必須用到不穩(wěn)定描述T=T(x,y,z,t)。通過(guò)這種關(guān)系,刀具和工件相對(duì)位置的熱影響就可以計(jì)算出來(lái)。如今,有限元和有限元建模技術(shù)得到廣泛的應(yīng)用[Soons,1993]。由于熱主要由主軸驅(qū)動(dòng)產(chǎn)生,Soons還利用固定間隙模型預(yù)測(cè)五軸銑床的溫度場(chǎng)。盡管如此,確定熱邊界范圍還是很難的。與內(nèi)部熱源引起的失調(diào)相反,環(huán)境影響模型,例如敞開(kāi)門(mén),只能做到敏感,但做不到預(yù)測(cè)。
4.3靜態(tài)分析
機(jī)床和儀器的結(jié)構(gòu)鏈能被類(lèi)似的靜態(tài)力所影響,例如,改變慢速移動(dòng)的機(jī)床部件的重量,輕微的改變切削力[Spaan,1995]和又鋼絲繩空氣管和真空管引起的力。加速度理由更高的頻率,將在下一段中討論。
由于機(jī)床元件的剛度有限,例如軸承、主軸、箱體、包括齒輪齒條和聯(lián)結(jié),上述提到的力將會(huì)引起刀具和探針的位置誤差。第一種方法,用以簡(jiǎn)單線性彈性理論或Hertzian聯(lián)系理論為基礎(chǔ)的方法計(jì)算剛度可以輕易的估計(jì)偏差。如今,可利用高級(jí)軟件包如Unigraphics,I-DEAS,Algor,Pro-Engineer[FEM,1998]對(duì)復(fù)雜平面結(jié)構(gòu)、軸承、支承和單一材料和復(fù)合材料的3D實(shí)體進(jìn)行線性和非線性分析(見(jiàn)5.1部分)。該領(lǐng)域一種有趣的方法在[Reinhart,1997]中有報(bào)道,他描述了在設(shè)計(jì)階段早期進(jìn)行綜合FEM分析的3D-CAD,叫做:“實(shí)體樣板”。
4.4動(dòng)態(tài)分析
由于機(jī)床結(jié)構(gòu)一般是由許多不同的零件裝配而成的,可以被視為質(zhì)量合理的復(fù)合體,所以整個(gè)結(jié)構(gòu)須根據(jù)這些元件間的相互作用而行動(dòng)。[Timoshenko,1974]。關(guān)于這個(gè)項(xiàng)目出版了很多好的書(shū),如[RaO,1990].
由于大部分驅(qū)動(dòng)系統(tǒng)都在質(zhì)量中心上做直線運(yùn)動(dòng),慣性將會(huì)引起機(jī)床部件的旋轉(zhuǎn),主要是由于齒輪系統(tǒng)和聯(lián)結(jié)的剛度有限。在高精機(jī)床中,例如3D-CMMs,即使是低的加速度也會(huì)給測(cè)量精度帶來(lái)很大的影響。
機(jī)床的動(dòng)力將會(huì)給系統(tǒng)工作帶來(lái)很大影響,位置精度和跟蹤精度會(huì)因?yàn)榻Y(jié)構(gòu)中的機(jī)械階躍響應(yīng)而被大大減小。再加上到規(guī)和主軸慣性作用引起的輕微的加速度,振動(dòng)狀態(tài)取決于固有頻率和阻尼大小(見(jiàn)5.1.2節(jié))。
為了預(yù)知內(nèi)部振動(dòng)引起的偏差,對(duì)機(jī)床動(dòng)力的建模分析是非常重要的,例如找出最低的固有頻率和在一定的頻率范圍內(nèi)機(jī)床結(jié)構(gòu)的振動(dòng)模型(由伺服系統(tǒng)的帶寬限制)。重量輕的(動(dòng))剛度設(shè)計(jì)對(duì)于決定機(jī)床元件最低自然頻率和靜剛度是非常重要的。
機(jī)床結(jié)構(gòu)中的傳動(dòng)裝置的相互作用力將會(huì)引起不能允許的偏差,特別是對(duì)高精度機(jī)床入晶片步進(jìn)器和非旋轉(zhuǎn)對(duì)稱(chēng)零件制造應(yīng)用的快速刀具伺服系統(tǒng)的SPDT機(jī)床。由于機(jī)架的質(zhì)量有限,和地面的聯(lián)結(jié)剛度有限,反作用力就會(huì)引起共振(見(jiàn)3.7部分)[Weck,1995b], [Weck,1997],[Renkens,1997],[Rankers,1997]。圖4.3簡(jiǎn)單說(shuō)明了上述因素的影響。
對(duì)于復(fù)雜系統(tǒng)如切削機(jī)床和晶片步進(jìn)器,對(duì)整個(gè)機(jī)床進(jìn)行建模和評(píng)估會(huì)使效率很低而耗時(shí)大。因此[Rankers,1997]建議將整個(gè)系統(tǒng)按基礎(chǔ)和元件成功的分割,分別對(duì)他們建模和分析。隨后將這些模型合成一個(gè)整體系統(tǒng)模型,用于整個(gè)機(jī)床的固有頻率和振動(dòng)模型的外形分析。
動(dòng)力模型,例如塊狀質(zhì)量模型,對(duì)于分析選中的想法的動(dòng)力行為是很有幫助的。這個(gè)模型包括由一系列機(jī)械條件所聯(lián)結(jié)起來(lái)的很多質(zhì)量,可以用一套差分方程表示。模型還原技術(shù)[Hoek,1992-1980],[Ewins,1984],[Rankers,1997]。為該目的,可應(yīng)用4.3節(jié)中的靜態(tài)模型確定固有頻率和質(zhì)量,質(zhì)量慣性和重心位置。應(yīng)用于SPOT機(jī)床中的陶瓷導(dǎo)軌結(jié)構(gòu),在圖4.4中描述了模型形狀分析的結(jié)果。[Vermeulen,1996a]。
4.5控制系統(tǒng)分析
在大多數(shù)情況下,閉環(huán)控制系統(tǒng)應(yīng)用于定位和多軸外形控制的機(jī)械系統(tǒng)。超精機(jī)床的閉環(huán)系統(tǒng)應(yīng)用實(shí)例是SPDT機(jī)床、陶瓷導(dǎo)軌機(jī)床、晶片步進(jìn)器和光盤(pán)操作題。為了獲得好的動(dòng)力行為,控制方法要和機(jī)械系統(tǒng)的動(dòng)力很好的配合??刂葡到y(tǒng)的優(yōu)化設(shè)計(jì)依賴(lài)系統(tǒng)的行為例如它的固有頻率,摩擦系數(shù)和其他干擾力。
一般情況下,控制系統(tǒng)包括位置和速度反饋,有時(shí)在一些高級(jí)加工中還加入了速度和加速度前饋控制(見(jiàn)5.6節(jié))。如[Groenhuis,1991]中所表明機(jī)械設(shè)計(jì)主要決定被控系統(tǒng)的等級(jí)。自由度度越多,模型的等級(jí)就越高。[Rankers,1997]提出三種主要的動(dòng)力影響源:傳動(dòng)裝置的復(fù)雜性、導(dǎo)軌系統(tǒng)的復(fù)雜性和機(jī)架的質(zhì)量和剛度,若引入多的自由度,所有這些因素可能會(huì)使被控系統(tǒng)的等級(jí)提高。在[Groenhuis,1991]中描述了一種傳動(dòng)裝置等級(jí)模型(兩個(gè)自由度)。它是描述機(jī)械閉環(huán)系統(tǒng)動(dòng)理性尾最小河最大眾的等級(jí)。
24
XXXXXXXX
畢業(yè)設(shè)計(jì)說(shuō)明書(shū)
題 目: 數(shù)控精密平面磨床進(jìn)給系統(tǒng)的設(shè)計(jì)
專(zhuān) 業(yè): 機(jī)械設(shè)計(jì)制作及其自動(dòng)化
學(xué) 號(hào): XXXXXXXX
姓 名: XXXXXXXX
指導(dǎo)教師:
完成日期: 2012年5月17日
目 錄
1 緒論 …………………………………………………………………………………1
1.1課題研究背景及目的……………………………………………………………1
1.2 國(guó)內(nèi)外發(fā)展?fàn)顩r…………………………………………………………………2
1.3 畢業(yè)設(shè)計(jì)任務(wù)與論文組成………………………………………………………5
2 數(shù)控平面磨床總體設(shè)計(jì) …………………………………………………………… 7
2.1磨床簡(jiǎn)介 ………………………………………………………………………… 7
2.2磨床技術(shù)規(guī)格…………………………………………………………………… 7
2.3主要結(jié)構(gòu)及說(shuō)明………………………………………………………………… 9
2.4磨床總體傳動(dòng)設(shè)計(jì)……………………………………………………………… 10
2.5 磨床總體布局設(shè)計(jì)……………………………………………………………… 10
3 理論計(jì)算……………………………………………………………………………… 12
3.1功率計(jì)算……………………………………………………………………………12
3.2電動(dòng)機(jī)選用…………………………………………………………………………14
3.3滾珠絲桿副選用與校核……………………………………………………………14
3.4錐齒輪尺寸計(jì)算……………………………………………………………………18
4 機(jī)構(gòu)設(shè)計(jì)…………………………………………………………………… 20
4.1傳動(dòng)部件設(shè)計(jì)………………………………………………………………………20
4.2導(dǎo)軌設(shè)計(jì)……………………………………………………………………………23
4.3機(jī)構(gòu)設(shè)計(jì)……………………………………………………………………………25
5 硬件電路設(shè)計(jì)………………………………………………………………………… 26
6 機(jī)床設(shè)計(jì)方案的改進(jìn)………………………………………………………………… 29
結(jié)論…………………………………………………………………………………………30
致謝…………………………………………………………………………………………31
參考文獻(xiàn)……………………………………………………………………………………32
附錄…………………………………………………………………………………………33
精密數(shù)控平面磨床——工作臺(tái)縱向進(jìn)給、橫向進(jìn)給機(jī)構(gòu)設(shè)計(jì)
摘要
本文對(duì)所設(shè)計(jì)的磨床作了詳盡的論述,分別從精密數(shù)控平面磨床的總體布局、橫向進(jìn)給、縱向進(jìn)給和硬件電路設(shè)計(jì)等幾個(gè)方面進(jìn)行了闡述。
緒論:介紹該課題研究背景和國(guó)內(nèi)外發(fā)展?fàn)顩r,以及此次畢業(yè)設(shè)計(jì)的任務(wù)。
數(shù)控平面磨床總體設(shè)計(jì):簡(jiǎn)單介紹了此次設(shè)計(jì)的數(shù)控平面磨床,給出該數(shù)控平面磨床的技術(shù)規(guī)格和主要結(jié)構(gòu)及說(shuō)明,并說(shuō)明了磨床的總體傳動(dòng)設(shè)計(jì)和總體布局設(shè)計(jì)。
理論計(jì)算:包括機(jī)床功率的計(jì)算,電動(dòng)機(jī)選用,滾珠絲桿副選用與校核以及錐齒輪尺寸計(jì)算。
方案設(shè)計(jì):詳細(xì)說(shuō)明了精密數(shù)控平面磨床的傳動(dòng)部件設(shè)計(jì)和導(dǎo)軌設(shè)計(jì)的要點(diǎn)和要求,并提出縱向進(jìn)給機(jī)構(gòu)和橫向進(jìn)給機(jī)構(gòu)的設(shè)計(jì)方案。
硬件電路設(shè)計(jì):詳細(xì)說(shuō)明了硬件的選用和電路的連接。
最后,針對(duì)本設(shè)計(jì)中不夠完美的地方的改進(jìn)想法,以及對(duì)本次畢業(yè)設(shè)計(jì)的總結(jié)和對(duì)我國(guó)超精密發(fā)展方向進(jìn)行了展望。
關(guān)鍵詞:平面磨床,數(shù)控,縱向進(jìn)給,橫向進(jìn)給
Precise Numerical Control Plane Grinding Machine
Author:Memg Dan
Tutor:Deng Zhaohui
Abstract
This paper makes a thorough exposition of the designed grinding machine from the aspects of its overall design,horizontal and portrait give and hardware circuit design.The following is a brief introduction of the composition of this paper.
INTRODUCTION: It introduces the background of this subject research ,the development in this field internal and international, and the assignment of this graduation project.
THE OVERALL DESIGN OF THE NUMERICAL CONTROL PLANE GRINDING MACHINE: It gives a brief introduction to the design of the numerical control plane grinding machine, and provides its technical specification , main structure and explanation of the numerical control plane grinding machine , and show the design of the overall transmission of the grinding machine and the design of the overall arrangement.
THE THEORETIC CALCULATION: It introduces the calculation of the power of lathe , the selection of the motor, the selection and check of the ball pole and the theoretic calculation of the size of the cone gear wheel.
CONCEPTUAL DESIGN: It introduces the main points and requirements of the design of the drive parts, and puts forward the design of the horizontal and portrait give parts.
THE DESIGN OF HARDWARE CIRCUIT: The election of the hardware and the connection of circuit are explained at length.
In view of the flaws of the design, it puts forward some measures to make impovement. Besides, a conclusion of this graduation project and prospect of the development of precise machine are given in this part.
Keyword: plane grinding machine , numerical control, portrait give, horizontal give
第1章 緒論
1.1 課題研究背景及目的
1.1.1 課題研究背景
隨著科學(xué)技術(shù)的迅速發(fā)展,國(guó)民經(jīng)濟(jì)各部門(mén)所需求的多品種、多功能、高精度、高品質(zhì)、高度自動(dòng)化的技術(shù)裝備的開(kāi)發(fā)和制造,促進(jìn)了先進(jìn)制造技術(shù)的發(fā)展。同時(shí),隨著社會(huì)進(jìn)步,人們對(duì)加工精度的要求越來(lái)越高,對(duì)精密和超精密加工的需求也日益增多,精密加工廣泛的應(yīng)用于制造生產(chǎn)中,對(duì)機(jī)床精度的要求也進(jìn)一步提高。磨削是一種重要的精密和超精密加工方法,因此磨削的應(yīng)用也愈加廣泛。磨削加工技術(shù)是先進(jìn)制造技術(shù)中的重要領(lǐng)域,是現(xiàn)代機(jī)械制造業(yè)中實(shí)現(xiàn)精密加工、超精密加工最有效、應(yīng)用最廣的基本工藝技術(shù)。
精密、超精密加工技術(shù)市場(chǎng)是國(guó)家尖端技術(shù)集中的市場(chǎng),它既是高代價(jià)、高投入的工藝技術(shù),又是高增值、高回報(bào)的工藝技術(shù),世界工業(yè)先進(jìn)國(guó)家都把它放在國(guó)家技術(shù)和經(jīng)濟(jì)振興的重要位置[1]。
當(dāng)今,在光學(xué)和電子零件加工中,都力圖提高精度和集成度,不僅是零件加工,而且對(duì)作為精密模具、機(jī)械零件、測(cè)試儀器零件最終加工工序的磨削加工也提出了超精密化的要求。此外,隨著新材料的開(kāi)發(fā),陶瓷等作為結(jié)構(gòu)零件材料在某些特殊場(chǎng)合已經(jīng)得到了應(yīng)用,這些新材料均屬于難切削材料,其結(jié)果不僅提高了磨削的比重,而且還促進(jìn)了磨床、磨削加工方式和工藝以及其它相關(guān)技術(shù)的發(fā)展。
隨著以工程陶瓷為主體的非金屬材料逐漸成為工程技術(shù)重要材料,各國(guó)還開(kāi)發(fā)了適應(yīng)加工這類(lèi)工程陶瓷的超精密平面磨床。陶瓷材料的特點(diǎn)是硬而脆,其硬度是碳鋼的1O至20倍,而斷裂韌性?xún)H為碳鋼的幾十分之一。陶瓷材科的性能對(duì)粗糙度、破損度、平面度等平面參數(shù)十分敏感。陶瓷材料的磨削機(jī)理與金屬材料不同,主要有三個(gè)特點(diǎn):砂輪損耗大,磨削比低3磨削力大,磨削效率低3由于磨削條件不同,會(huì)使加工零件的強(qiáng)度發(fā)生變化。
根據(jù)以上這些特點(diǎn),各國(guó)都致力開(kāi)發(fā)了適合進(jìn)行納米磨削的超精密平面磨床,并且進(jìn)行了脆性材料的可延性磨削技術(shù)的研究。
隨著社會(huì)的不斷發(fā)展,高效是各個(gè)生產(chǎn)商不斷追求的目標(biāo),數(shù)控技術(shù)得到推崇。
當(dāng)今,磨削加工技術(shù)的發(fā)展趨勢(shì)是向著采用超硬磨料磨具,發(fā)展高速、高效、高精度磨削新工藝,裝備CNC數(shù)控磨床的方向發(fā)展。
1.1.2 課題研究目的
本次設(shè)計(jì)目的是設(shè)計(jì)一臺(tái)精密數(shù)控平面磨床,精度等級(jí)為1,用砂輪周邊磨削平面,也可以磨削臺(tái)階平面。能用于機(jī)械制造業(yè)及工具模具制造業(yè),能加工各種難加工材料(如陶瓷材料)。
1.2 國(guó)內(nèi)外發(fā)展?fàn)顩r
超精密加工技術(shù)是以高精度為目標(biāo)的技術(shù),它具有單項(xiàng)技術(shù)的極限、常規(guī)技術(shù)的突破、新技術(shù)綜合三個(gè)方面永無(wú)止境的追求的特點(diǎn)。
實(shí)現(xiàn)超精密加工的主要條件應(yīng)包括以下諸方面的高新技術(shù):超精密加工機(jī)床與裝、夾具;超精密刀具和磨料,刀具刃磨技術(shù);超精密加工工藝;超精密加工環(huán)境控制(包括恒溫、隔振、潔凈控制等);超精密加工的測(cè)控技術(shù)等。毫無(wú)疑問(wèn),超精密加工機(jī)床技術(shù)是最關(guān)鍵的技術(shù),它直接代表了國(guó)家制造業(yè)的水平 [1]。
大學(xué)和研究所保持著對(duì)超精密機(jī)床研究的持續(xù)熱情,對(duì)高技術(shù)進(jìn)行超前研究,并使得研究型超精密試驗(yàn)機(jī)床盡可能采用高技術(shù)作產(chǎn)業(yè)的先導(dǎo),對(duì)超精密機(jī)床產(chǎn)業(yè)化和商品化起著推動(dòng)作用。
美國(guó)LLNL實(shí)驗(yàn)室開(kāi)發(fā)了一系列超精密試驗(yàn)研究型機(jī)床,1984年研制成功的大型光學(xué)金剛石車(chē)床LODTM是至今為止精度最高的大型超精密機(jī)床[2]。該機(jī)床可加工直徑為2.1m質(zhì)量4.5t的工件。采用高壓液體靜壓導(dǎo)軌在1.07m×1.12m范圍內(nèi)直線度誤差小于0.025(在每個(gè)溜板上裝有標(biāo)準(zhǔn)平尺,通過(guò)測(cè)量和修正來(lái)達(dá)到)。位移誤差不超過(guò)0.013(用氦屏蔽光路的激光干涉儀來(lái)測(cè)量和反饋控制達(dá)到)。主軸溜板運(yùn)動(dòng)偏擺小于0.001’’ (通過(guò)兩路激光干涉儀測(cè)量,壓電陶瓷修正來(lái)實(shí)現(xiàn)).激光測(cè)量系統(tǒng)有單獨(dú)的花崗巖支架系統(tǒng),不與機(jī)床聯(lián)結(jié),油噴淋冷卻系統(tǒng)可將油溫控制在200.0025 .采用摩擦驅(qū)動(dòng),推力可達(dá)1360N,運(yùn)動(dòng)分辨率達(dá)0.005。
在商品化實(shí)用超精密機(jī)床方面,世界上最負(fù)盛名的是英國(guó)的Tayler/Hobson-Pneumo公司。該公司生產(chǎn)Optoform,Microform和Nanoform三個(gè)系列的超精密機(jī)床。典型產(chǎn)品Nanoform250車(chē)床采用空氣靜壓主軸,其徑向、軸向剛度分別為88MN/m和62MN/m,徑向和軸向精度0.05,采用液體靜壓搗鬼,水平和垂直線度分別為0.2 /250mm和0.5 /250mm,定位精度為0.3 /250mm,數(shù)控系統(tǒng)采用Nanopath,分辨率為0.001。測(cè)量系統(tǒng)采用光柵遲或激光干涉儀,分辨率分別為8.6nm和1.25nm。加工型面精度達(dá)0.2,表面粗糙度優(yōu)于0.01。
美國(guó)洛切斯特大學(xué)光學(xué)中心(COM)[3]開(kāi)發(fā)了POTICAM系列的超精密光學(xué)加工機(jī)床;OPTICAM超精機(jī)床系列設(shè)備包括:OPTICAM/SM平面拋光機(jī)床,OPTICAM/AM非球面加工機(jī)床和OPTICAM/PM棱鏡加工機(jī)床。2000年開(kāi)始進(jìn)行“保形光學(xué)制造技術(shù)”的研究,開(kāi)發(fā)了Nanotech 150AG非球加工機(jī)床;Q22磁流變加工機(jī)床等。
英國(guó)的Granfield 大學(xué)的精密工程研究所研究的OAGM2500 六軸CNC 超精密磨床[4]、Nanocenter250、600非球面光學(xué)零件車(chē)窗和大型超精密金剛石鏡面磨床,是超精密機(jī)床研究的先鋒。
1.超精密磨削及磨粒加工工藝技術(shù)
當(dāng)前精密磨削是指被加工零件的加工精度達(dá)1~0.1,表面粗糙度為0.2~0.01的加工技術(shù)。超精密磨削的加工精度小于0.1,表面粗糙度,磨床定位精度的分辨率和重復(fù)精度小于0.01?,F(xiàn)在超精密磨削正從微米、亞微米(1~0.1)的加工向納米級(jí)加工發(fā)展。用磨具進(jìn)行磨削和用磨粒進(jìn)行研磨和拋光是實(shí)現(xiàn)精密及超精密加工的主要途徑。用于超精密鏡面磨削的樹(shù)脂結(jié)合劑金剛石砂輪的磨料平均粒徑可小至4,使用20nm的超微細(xì)磨粒的磨片,所磨削加工的集成電路板的溝槽邊沿沒(méi)有崩角現(xiàn)象;用鑄鐵結(jié)合劑粒度為的、金剛石砂輪精磨SiC鏡面,表面粗糙度可達(dá)2~5nm。日本還用激光在研磨過(guò)的人造金剛石上切割出大量等高性一致的微小切削刃,對(duì)硬脆材料進(jìn)行精密加工,效果很好。對(duì)極細(xì)粒度的模具而言,砂輪鋒銳性的保持是一個(gè)大問(wèn)題。金屬基微細(xì)超硬磨料砂輪在線電解修整(ELID)技術(shù),很好地解決了這一問(wèn)題。用6000~8000目粒度的鋼結(jié)合劑金剛石砂輪和ELID技術(shù)精磨硅片,去除率為,平面度為[5]。
2.超精密機(jī)床軸系的研究與發(fā)展
氣浮主軸的最大優(yōu)點(diǎn)是回轉(zhuǎn)精度高。由于氣浮誤差均化效應(yīng),通常主軸回轉(zhuǎn)運(yùn)動(dòng)精度比主軸加工的圓度精度要高出3~5倍。主軸和電機(jī)采用一體化結(jié)構(gòu)直接驅(qū)動(dòng)。電動(dòng)機(jī)與株洲的動(dòng)平衡問(wèn)題,電動(dòng)機(jī)電磁振動(dòng)消除、電動(dòng)機(jī)熱消除、主軸熱伸長(zhǎng)補(bǔ)償以及新型氣浮結(jié)構(gòu)設(shè)計(jì)與制造等都是一直在研究改善的問(wèn)題。為了提高主軸的徑向和軸向剛度,采用半球型氣浮主軸如德國(guó)Kugler公司EK系列氣浮軸承。為了進(jìn)一步提高回轉(zhuǎn)精度和剛度,近年來(lái)很多人研究控制節(jié)流量反饋方法來(lái)實(shí)現(xiàn)運(yùn)動(dòng)的主動(dòng)控制。
最近,用電磁技術(shù)和氣浮結(jié)合的控制方法也在研究之中。但電磁技術(shù)的缺點(diǎn)很多,如熱效應(yīng)嚴(yán)重等,還不能達(dá)到很高精度。日本學(xué)者[6]研究了一種用永磁體加壓電陶瓷微位移驅(qū)動(dòng)和電容傳感器位置測(cè)量的方法來(lái)改善氣浮主軸的精度。主動(dòng)控制增加了系統(tǒng)的復(fù)雜程度和降低了可靠性,目前尚不到使用的程度。但使用永磁體增加止推氣墊的剛度的成功實(shí)例并不少見(jiàn),這種氣磁軸承和加開(kāi)真空負(fù)壓槽的真空吸附加強(qiáng)型氣浮軸承相似。這種綜合軸承在一定程度上可改善氣浮軸承的動(dòng)態(tài)特性,如增大阻尼。
3.超精密驅(qū)動(dòng)技術(shù)的新進(jìn)展
為了獲得高的運(yùn)動(dòng)精度和運(yùn)動(dòng)分辨率,超精密導(dǎo)軌直線運(yùn)動(dòng)的驅(qū)動(dòng)對(duì)伺服電動(dòng)機(jī)的要求很高,既要求有平穩(wěn)的超低速運(yùn)動(dòng)特性,又要又大的調(diào)速范圍,好的電磁兼容性。美國(guó)Parker Hannifin公司的DM和DR系列直接驅(qū)動(dòng)伺服執(zhí)行器,輸出力矩大,位置控制分辨率高達(dá)1/640 000。主軸驅(qū)動(dòng)電動(dòng)機(jī)可以采用印刷板電動(dòng)機(jī),它的慣性小,發(fā)熱量小。
精密滾珠絲桿式超精機(jī)床目前采用的驅(qū)動(dòng)方法,但絲桿的安裝誤差、伺桿本身的彎曲、滾珠的跳動(dòng)及制造上的誤差,螺母的預(yù)緊程度等都會(huì)給導(dǎo)軌運(yùn)動(dòng)精度帶來(lái)影響。通常超精密傳動(dòng)機(jī)構(gòu)應(yīng)有特殊設(shè)計(jì),例如絲桿螺母與氣浮平臺(tái)的聯(lián)結(jié)器應(yīng)保證軸向和滾轉(zhuǎn)剛度高,而水平、垂直、俯仰和偏轉(zhuǎn)四自由度為無(wú)約束的機(jī)構(gòu),電動(dòng)機(jī)預(yù)絲桿的聯(lián)結(jié)器也應(yīng)采用純扭矩?zé)o反轉(zhuǎn)間隙的聯(lián)軸器。
氣浮絲桿和磁浮絲桿可進(jìn)一步減小滾珠絲桿的跳動(dòng)誤差和因摩擦和反向間隙引入控制系統(tǒng)的非線性環(huán)節(jié)。俄羅斯研制的氣浮/磁浮絲桿[7][8]其電磁絲桿的傳動(dòng)主要指標(biāo)如下:絲桿直徑62mm,螺距和螺紋齒高4mm,絲扣寬度1mm,間隙=0.1mm,承載能力和靜剛度分別為700N和75MN/m和氣浮平臺(tái)聯(lián)合使用時(shí)驅(qū)動(dòng)裝置的分辨率為0.01。Fanuc公司的超精密車(chē)、銑床R0B0nano Ui就采用了面節(jié)流式空氣靜壓絲桿螺母副。
超精密加工的意義重大,我國(guó)超精密加工技術(shù)的發(fā)展要趕超世界先進(jìn)水平,就應(yīng)優(yōu)先考慮適度、穩(wěn)定高精度的戰(zhàn)略。最求高精度從理論上是無(wú)窮盡的,但根據(jù)我國(guó)國(guó)情,選擇適當(dāng)?shù)耐度?精度比,追求適度、穩(wěn)定高精度,依靠自己的力量開(kāi)發(fā)廉價(jià)化的超精加工技術(shù)。
1.3 畢業(yè)設(shè)計(jì)任務(wù)與論文組成
1.3.1 畢業(yè)設(shè)計(jì)任務(wù)
1.設(shè)計(jì)一臺(tái)精密數(shù)控平面磨床,用砂輪周邊磨削平面,也可以磨削臺(tái)階平面。能用于機(jī)械制造業(yè)及工具模具制造行業(yè),能加工各種難加工材料;
2.確定磨床的總體方案
3.工作臺(tái)縱向進(jìn)給機(jī)構(gòu)的設(shè)計(jì),伺服電機(jī)和滾珠絲桿副設(shè)計(jì)計(jì)算,繪制縱向進(jìn)給機(jī)構(gòu)的機(jī)械結(jié)構(gòu)裝配圖;繪制相關(guān)零件圖;
4.工作臺(tái)橫向進(jìn)給機(jī)構(gòu)設(shè)計(jì),繪制橫向進(jìn)給機(jī)構(gòu)機(jī)械結(jié)構(gòu)裝配圖;
5.磨床床身立柱的設(shè)計(jì)(選做);
6.磨床微機(jī)數(shù)控系統(tǒng)的硬件電路設(shè)計(jì);
7.翻譯指定的英文專(zhuān)業(yè)文獻(xiàn);
8.撰寫(xiě)畢業(yè)設(shè)計(jì)論文(說(shuō)明書(shū))。
1.3.2 論文組成
論文由以下幾章組成
1.緒論:介紹課題研究背景和國(guó)內(nèi)外發(fā)展?fàn)顩r,以及此次畢業(yè)設(shè)計(jì)的任務(wù)。
2.?dāng)?shù)控平面磨床總體設(shè)計(jì):簡(jiǎn)單介紹此次設(shè)計(jì)的數(shù)控平面磨床,給出所要設(shè)計(jì)的數(shù)控平面磨床的技術(shù)規(guī)格和主要結(jié)構(gòu)及說(shuō)明,并說(shuō)明了磨床的總體傳動(dòng)設(shè)計(jì)和總體布局設(shè)計(jì)。
3.理論計(jì)算:包括機(jī)床功率的計(jì)算,電動(dòng)機(jī)選用,滾珠絲桿副選用與校核以及錐齒輪尺寸計(jì)算。
4.方案設(shè)計(jì):詳細(xì)說(shuō)明了精密數(shù)控平面磨床的傳動(dòng)部件設(shè)計(jì)和導(dǎo)軌設(shè)計(jì)的要點(diǎn)及要求,并提出縱向進(jìn)給機(jī)構(gòu)和橫向進(jìn)給機(jī)構(gòu)的設(shè)計(jì)方案。
5.硬件電路設(shè)計(jì):詳細(xì)說(shuō)明了硬件的選用和電路的連接。
6.機(jī)床改進(jìn):針對(duì)本設(shè)計(jì)中不夠完美的地方的改進(jìn)想法。
7.結(jié)論:包括這次畢業(yè)設(shè)計(jì)的總結(jié),和對(duì)精密數(shù)控平面磨床的發(fā)展方向進(jìn)行了展望。
8.致謝
9.參考文獻(xiàn)
第2章 數(shù)控平面磨床總體設(shè)計(jì)
2.1 磨床簡(jiǎn)介
本次設(shè)計(jì)是一臺(tái)精密數(shù)控平面磨床,它除了可以磨削平面外,還可以磨削臺(tái)階平面,不僅適用于機(jī)械加工行業(yè)亦適用于模具行業(yè)。它采用機(jī)電一體化設(shè)計(jì)原理,通過(guò)采用CBN砂輪,滾珠絲桿副,數(shù)控系統(tǒng)等措施保證加工精度。
該精密數(shù)控平面磨床主要包括磨頭及垂直進(jìn)給系統(tǒng)、工作臺(tái)縱向及橫向驅(qū)動(dòng)系統(tǒng)、床身及防護(hù)罩裝置、冷卻及潤(rùn)滑系統(tǒng)和數(shù)控系統(tǒng)五大部分。該機(jī)床的磨頭為普通平面磨床磨頭,垂直進(jìn)給的高精度由絲桿副和數(shù)控系統(tǒng)來(lái)保證。該機(jī)床的橫向驅(qū)動(dòng)系統(tǒng)及縱向進(jìn)給機(jī)構(gòu)采用滾珠絲桿加交流伺服電機(jī)驅(qū)動(dòng),提高加工精度??v向進(jìn)給導(dǎo)軌鑲裝塑料,以降低摩擦系數(shù),提高耐磨性和抗撕傷能力,并防止低速時(shí)出現(xiàn)爬行。該機(jī)床的冷卻系統(tǒng)包括磨削液冷卻、強(qiáng)制過(guò)濾等裝置。為減少磨削液對(duì)砂輪制功功率的損耗,冷卻壓力為2Mpa。
機(jī)床的總體布局分為十字拖板型,拖板上下縱橫導(dǎo)軌均為雙V型滑動(dòng)導(dǎo)軌,工件摩削平面的形成由工作臺(tái)的縱向運(yùn)動(dòng)和拖板的橫向運(yùn)動(dòng)而成,磨頭僅做垂直上下運(yùn)動(dòng)。
工作臺(tái)縱向運(yùn)動(dòng)由伺服電機(jī)帶動(dòng),拖板橫向運(yùn)動(dòng)也有伺服電機(jī)驅(qū)動(dòng)。通過(guò)一對(duì)減速齒輪傳動(dòng),滾珠絲桿轉(zhuǎn)動(dòng)而使拖板橫向往復(fù)運(yùn)動(dòng),磨頭垂直導(dǎo)軌為立柱前后導(dǎo)軌形式的貼型滑動(dòng)導(dǎo)軌,磨頭主軸系統(tǒng)為前后各為雙聯(lián)成堆高精度滾動(dòng)軸承結(jié)構(gòu)。主軸的旋轉(zhuǎn)運(yùn)動(dòng)由伺服電機(jī)驅(qū)動(dòng),通過(guò)柔性連軸器使主軸運(yùn)轉(zhuǎn),磨頭的垂直運(yùn)動(dòng)是由伺服電機(jī)驅(qū)動(dòng)蝸桿、渦輪傳動(dòng)與其向嚙合的螺旋齒輪,轉(zhuǎn)動(dòng)與螺旋齒輪剛性連接的絲桿副的螺母而使與絲桿固定聯(lián)結(jié)的磨頭做垂直運(yùn)動(dòng)。
本級(jí)床為高精密數(shù)控機(jī)床,幾何精度、工作精度很高,性能可靠性穩(wěn)定,垂直進(jìn)給、橫向進(jìn)給、縱向進(jìn)給具有數(shù)控系統(tǒng),進(jìn)給靈敏度、準(zhǔn)確度高,磨削自動(dòng)化程度高,當(dāng)每次自動(dòng)磨削循環(huán)結(jié)束,工作臺(tái)始終停止在縱向運(yùn)動(dòng)的右端
2.2 磨床技術(shù)規(guī)格
1.工作臺(tái)面尺寸 200×630mm
2.加工范圍:
最大磨削尺寸(寬×長(zhǎng)×高) 200×630×380mm
最大工件載重量(包括電磁吸盤(pán)) 130KG
3.工作臺(tái):
最大縱向行程 750mm
最大橫向行程 220mm
T型槽數(shù)和槽寬 4×14mm
4.工作臺(tái)縱向運(yùn)動(dòng):
進(jìn)給速度 0.3~25m/min
手動(dòng)進(jìn)給手輪每轉(zhuǎn) 180mm
5.拖板橫向運(yùn)動(dòng):
連續(xù)進(jìn)給 0.2~1m/min
手動(dòng)機(jī)給手輪每轉(zhuǎn) 5mm
手輪每格 0.02mm
微進(jìn)給手輪每大格 0.005mm
6.磨頭垂直運(yùn)動(dòng):
砂輪主軸中心線至工作臺(tái)面之距 160~480mm
砂輪轉(zhuǎn)速 3000r/min
磨頭垂直快速升降速度 400mm/min。
磨頭垂直自動(dòng)進(jìn)給量 0.001~0.02mm
最小進(jìn)給量 0.0001mm
手動(dòng)進(jìn)給旋鈕每轉(zhuǎn)(×1/×10/×100) 0.01/0.1/1mm
旋鈕刻度(×1/×10/×100) 0.0001/0.001/0.01mm
快速進(jìn)給 400mm/min
7.砂輪尺寸:
外徑 200mm
寬度 25mm
孔 32mm
8.占地空間:
長(zhǎng) 2405mm
寬 1593mm
高 1786mm
機(jī)床重量 2000kg
2.3 主要結(jié)構(gòu)及說(shuō)明
2.3.1 磨頭
磨頭主軸的轉(zhuǎn)動(dòng),由主軸電機(jī)通過(guò)柔性聯(lián)軸器驅(qū)動(dòng)具有前后支承均為成對(duì)高精密滾動(dòng)向心推力球軸承而使砂輪轉(zhuǎn)動(dòng)。
2.3.2 垂直進(jìn)給機(jī)構(gòu)
由伺服電機(jī)驅(qū)動(dòng)蝸桿,傳動(dòng)與其相嚙合的螺旋齒輪,轉(zhuǎn)動(dòng)與螺旋齒輪剛性聯(lián)結(jié)的絲桿副的螺母,移動(dòng)絲桿使與其固定聯(lián)結(jié)的磨頭體垂直運(yùn)動(dòng)。
垂直運(yùn)動(dòng)具有數(shù)控系統(tǒng)基礎(chǔ),進(jìn)給有自動(dòng)與手動(dòng)。
1.自動(dòng)
⑴快速運(yùn)動(dòng) 按住點(diǎn)動(dòng)式快速上升鍵,磨頭上升,當(dāng)釋放時(shí)磨頭停止上升,按住點(diǎn)動(dòng)式快速下降鍵,磨頭下降,當(dāng)釋放時(shí),磨頭停止下降,其運(yùn)動(dòng)速度為400mm/min。
⑵點(diǎn)發(fā)進(jìn)給運(yùn)動(dòng) 點(diǎn)按點(diǎn)發(fā)進(jìn)給鍵,每次進(jìn)給量為0.001/mm。
⑶自動(dòng)進(jìn)給運(yùn)動(dòng) 在自動(dòng)磨削時(shí),分粗磨、精磨和無(wú)進(jìn)給磨削,其進(jìn)給量為0.0005~0.02定量分級(jí)任意選擇,且具有預(yù)置和粗磨、精磨和無(wú)進(jìn)給磨削次數(shù)的自動(dòng)轉(zhuǎn)換,當(dāng)無(wú)進(jìn)給磨削次數(shù)結(jié)束,工作臺(tái)固定的在右端停止,在磨削過(guò)程中有數(shù)字顯示。
2.手動(dòng)
手動(dòng)進(jìn)給由手動(dòng)脈沖發(fā)生器控制器進(jìn)給量,根據(jù)需要任意選擇既定的定量分級(jí)的進(jìn)給,其進(jìn)給量為0.0001~0.01/格。根據(jù)預(yù)先選擇的進(jìn)給量和轉(zhuǎn)動(dòng)、手動(dòng)脈沖發(fā)生器就可獲得所選擇的進(jìn)給量。
調(diào)整用手動(dòng)機(jī)構(gòu),在床身后面,在與伺服電機(jī)相聯(lián)接得蝸桿軸上裝有一直齒齒輪,轉(zhuǎn)動(dòng)相嚙合的另一錐齒輪軸,通過(guò)蝸桿螺旋齒輪副和垂直絲桿副可獲得磨頭上下調(diào)整已動(dòng),在平時(shí),錐齒輪對(duì)始終處于非嚙合狀態(tài)的拓開(kāi)位置。
2.3.3 橫向進(jìn)給機(jī)構(gòu)
拖板(或工作臺(tái))橫向進(jìn)給運(yùn)動(dòng)可分為手搖進(jìn)給、手動(dòng)微動(dòng)進(jìn)給和自動(dòng)進(jìn)給。
1.手搖進(jìn)給時(shí)應(yīng)將捏手松開(kāi),使斜齒輪與手輪空轉(zhuǎn),然后將手輪向前推,使齒型離合器相接合(此時(shí)拉桿以將齒輪副脫開(kāi))搖動(dòng)手柄,經(jīng)手輪、軸、聯(lián)軸器,轉(zhuǎn)動(dòng)滾珠絲桿,使?jié)L珠螺母移動(dòng),帶動(dòng)拖板做橫向進(jìn)給運(yùn)動(dòng)。
2.手動(dòng)微動(dòng)進(jìn)給 基本上與手搖進(jìn)給相同,此時(shí)應(yīng)將捏手?jǐn)Q緊,使斜齒輪與手輪結(jié)合在一起,然后使齒型離合器接合,轉(zhuǎn)動(dòng)蝸桿上的捏手,經(jīng)蝸桿、斜齒輪嚙合傳動(dòng)軸,其余傳動(dòng)與上面相同,微動(dòng)把手上的最小刻度值為0.005毫米。
3.自動(dòng)進(jìn)給 自動(dòng)機(jī)給的動(dòng)力為伺服電機(jī),在它的輸出軸上裝有齒輪,經(jīng)與它嚙合的齒輪而傳動(dòng)軸(此時(shí)應(yīng)將齒型離合器分開(kāi))經(jīng)聯(lián)軸器使?jié)L珠絲桿轉(zhuǎn)動(dòng),滾珠絲母是緊固在拖板上的,因此式拖板做橫向自動(dòng)進(jìn)給,橫向進(jìn)給量:斷續(xù)為0.5~12毫米/次,連續(xù)為0.2~1米/分。
2.3.4 縱向進(jìn)給機(jī)構(gòu)
拖板(或工作臺(tái))縱向進(jìn)給運(yùn)動(dòng)可分為手搖進(jìn)給和自動(dòng)進(jìn)給。
1.手搖進(jìn)給時(shí)應(yīng)將捏手松開(kāi),使斜齒輪與手輪空轉(zhuǎn),然后將手輪向前推,使圓柱齒輪和托板上的齒條相捏合(此時(shí)拉桿以將齒輪副脫開(kāi))搖動(dòng)手柄,經(jīng)手輪帶動(dòng)圓柱齒輪轉(zhuǎn)動(dòng),圓柱齒輪和尺條捏合帶動(dòng)拖板做縱向進(jìn)給運(yùn)動(dòng)。
2.自動(dòng)進(jìn)給 自動(dòng)機(jī)給的動(dòng)力為伺服電機(jī),在它的輸出軸上裝有齒輪,經(jīng)與它嚙合的齒輪而使?jié)L珠絲桿轉(zhuǎn)動(dòng),滾珠絲母是緊固在拖板上的,因此式拖板做縱向自動(dòng)進(jìn)給,縱向進(jìn)給量0.3~25m/min。
2.4 磨床總體傳動(dòng)設(shè)計(jì)
磨床總體傳動(dòng)圖,見(jiàn)圖2.1。(詳見(jiàn)A3[3]號(hào)圖)
2.5 磨床總體布局設(shè)計(jì)
磨床的總體布局圖,見(jiàn)圖2.2。(詳見(jiàn)A3[2]號(hào)圖)
圖2.1 精密數(shù)控平面磨床傳動(dòng)系統(tǒng)圖
圖2.2 精密數(shù)控平面磨床總體布局圖
第3章 理論計(jì)算
3.1 功率計(jì)算
如下圖3.1所示:
圖3.1 磨削力示意圖
——切向磨削力(N);
吃刀量(mm);
砂輪線速度(m/s);
工件縱向進(jìn)給速度(m/min);
由于本機(jī)床既要求能加工普通鋼材,又要能加工硬脆陶瓷材料;所以計(jì)算切削功率時(shí)分為兩種情況。
(1)當(dāng)磨削普通鋼材時(shí),平面磨削力的公式為:
= [9] (3.1)
由公式(3.1)得:
=
=
=105N
其中 =0.02為磨床加工的最大磨削量;
=25為磨床工作臺(tái)最大進(jìn)給速度;
由經(jīng)驗(yàn)公式[9]可知:徑向力=1000N
砂輪所受的的軸向力很小,在這里忽略不計(jì)。
縱向進(jìn)給機(jī)構(gòu)所受的垂直力等于砂輪所受的徑向力,由于實(shí)際中角很小,所以縱向機(jī)構(gòu)所受的軸向力約等于砂輪的切向力。
縱向進(jìn)給機(jī)構(gòu)軸向所受的合力為:
[9] (3.2)
由公式(3.2)得:
.加工時(shí)縱向最大進(jìn)給速度V=9.6m/min
縱向進(jìn)給機(jī)構(gòu)的切削功率為:
當(dāng)磨削硬脆材料時(shí),在同樣的工作條件下,根據(jù)以往的經(jīng)驗(yàn),=1000N,/=20, =50N,
縱向進(jìn)給機(jī)構(gòu)軸向所受的合力為:
[9] (3.3)
由公式(3.3)可得
縱向進(jìn)給機(jī)構(gòu)的切削功率為:
3.2 電動(dòng)機(jī)選用
綜合以上兩種磨削方式,選取磨削功率=0.11kw。由于機(jī)床設(shè)計(jì)選擇的數(shù)控系統(tǒng)是西門(mén)子SINUMERIK802D型,所以選擇與選擇與西門(mén)子數(shù)控系統(tǒng)相匹配的IKF6伺服電機(jī)。
3.3 滾珠絲桿副選用與校核
1.工作壽命選擇
查表取Th=15000h[9]
2.等效負(fù)荷和等效轉(zhuǎn)速
⑴等效負(fù)荷計(jì)算
導(dǎo)軌摩擦力:
=μW[9] (3.4)
由公式(3.4)可得
=μW
=0.1×5000
=500N
軸向力:1000N
切向力:105N
Fm=500+1000+100=1605N
⑵等效轉(zhuǎn)速計(jì)算
伺服電機(jī)最高轉(zhuǎn)速 =3000r/min
絲桿轉(zhuǎn)速 =3000×=2143r/min
絲桿導(dǎo)程 ,取
絲桿轉(zhuǎn)速 快速移動(dòng) 2143r/min
一般加工 800r/min
精密加工 400r/min
調(diào)整 50r/min
等效轉(zhuǎn)速
3.絲桿選擇
⑴等效軸向動(dòng)負(fù)荷
查表得
[9] (3.5)
由公式(3.5)得
查表選擇插管埋入式雙螺母墊片預(yù)緊滾珠絲桿副,型號(hào)為CMD3212-2.5,=25837N,,,螺母長(zhǎng)度L=151mm,余程為45mm[9]
螺紋長(zhǎng)度
支承跨踞
絲桿全長(zhǎng)
采用F-F式支承,絲桿一般不會(huì)受壓縮力作用,可不校核壓桿穩(wěn)定性。
絲桿彎曲振動(dòng)臨界轉(zhuǎn)速:
[9] (3.6)
查表得
由公式(3.6)得
預(yù)拉伸量:取溫升為;
螺紋伸長(zhǎng)量:
[9] (3.7)
由公式(3.7)得
絲桿全長(zhǎng)伸長(zhǎng)量:
[9] (3.8)
由公式(3.8)得
取預(yù)拉伸量
預(yù)拉伸力:
[9] (3.9)
由公式(3.9)得
4.軸承選擇
采用成對(duì)接觸角推力球軸承為固定端,軸承型號(hào)7304C。其尺寸參數(shù)為:d=20mm,D=52mm,Z=13,=7.144mm。技術(shù)參數(shù)為:C=29200N =28000N
計(jì)算軸承動(dòng)負(fù)荷C:
(3.10)
式中 ——壽命系數(shù)
——轉(zhuǎn)速系數(shù)
[9] (3.11)
由公式(3.11)得
[9] (3.12)
由公式(3.12)得
把、代入,由公式(3.10)得
=24947N
<28000N
滿足強(qiáng)度要求[9]
3.4 錐齒輪尺寸計(jì)算[10]
分錐角°
°
大端分度圓直徑 =30×3=90mm
=52×3=156mm
外錐距 =90/2sin19.983=90.046mm
齒寬系數(shù) =1/3
齒寬 b==(1/3)×90.046=30mm
大端齒頂高 =1×3=3mm =3㎜
大端齒根高 =(1+0.2-0)×3=3.6㎜
=(1+0.2-0)×3=3.6㎜
全齒高 =(2+0.2)×3=6.6㎜
齒根角
齒頂角
頂錐角
根錐角
大端齒頂圓直徑 90+2×3×cos29.983=95.197㎜
156+2×3×cos60.017=159.000㎜
第4章 縱向進(jìn)給機(jī)構(gòu)設(shè)計(jì)
4.1 傳動(dòng)部件設(shè)計(jì)
4.1.1進(jìn)給傳動(dòng)系設(shè)計(jì)應(yīng)滿足的基本要求
進(jìn)給運(yùn)動(dòng)的傳動(dòng)質(zhì)量直接關(guān)系到機(jī)床的加工性能,故對(duì)進(jìn)給運(yùn)動(dòng)有如下要求:
1.具有足夠的靜剛度和動(dòng)剛度;
2.具有良好的快速響應(yīng)性,做低速進(jìn)給運(yùn)動(dòng)或微量進(jìn)給時(shí)不爬行,運(yùn)動(dòng)平穩(wěn),靈敏度高;
3.抗震性好,不會(huì)因摩擦自振而引起傳動(dòng)件的抖動(dòng)或齒輪傳動(dòng)的沖擊噪音;
4.具有足夠?qū)挼恼{(diào)速范圍,保證實(shí)現(xiàn)所要求的進(jìn)給量(進(jìn)給范圍、數(shù)列),以適應(yīng)不同的加工材料,使用不同刀具,滿足不同的零件加工要求,能傳動(dòng)較大的扭矩;
5.進(jìn)給系統(tǒng)的傳動(dòng)精度和定位精度要高;
6.結(jié)構(gòu)簡(jiǎn)單,加工和裝配工藝性好。調(diào)整維修方便,操縱輕便靈活。[11]
7.消除傳動(dòng)間隙,進(jìn)給系統(tǒng)的傳動(dòng)間隙(多指反向間隙)存在于各傳動(dòng)副和各聯(lián)結(jié)結(jié)構(gòu)中,直接影響機(jī)床的加工精度。為盡量消除其影響,應(yīng)采用消隙傳動(dòng)件和消隙聯(lián)系結(jié)構(gòu);
8.速度穩(wěn)定性要好,進(jìn)給部件在低速運(yùn)動(dòng)時(shí),不產(chǎn)生“爬行”,高速運(yùn)動(dòng)或負(fù)載變化時(shí)不發(fā)生振動(dòng)。[12]
4.1.2 傳動(dòng)部件設(shè)計(jì)
1.齒傳動(dòng)間隙的消除
傳動(dòng)副為齒輪傳動(dòng)時(shí),要消除其傳動(dòng)間隙。齒輪傳動(dòng)間隙的消除有剛性調(diào)整法和柔性調(diào)整法兩類(lèi)方法。
⑴剛性調(diào)整法時(shí)調(diào)整后的齒側(cè)間隙不能自動(dòng)補(bǔ)償,如偏心軸套調(diào)整法、變齒厚調(diào)整法、斜齒輪軸向墊片調(diào)整法等。特點(diǎn)是結(jié)構(gòu)簡(jiǎn)單,傳動(dòng)剛度較高。但要求嚴(yán)格控制齒輪的齒厚及齒距公差,否則將影響運(yùn)動(dòng)的靈活性。
⑵柔性調(diào)整法是指調(diào)整后的齒側(cè)間隙可以自動(dòng)進(jìn)行補(bǔ)償,結(jié)構(gòu)比較復(fù)雜,傳動(dòng)剛度低些,會(huì)影響傳動(dòng)的平穩(wěn)性。主要有雙片直齒輪錯(cuò)齒調(diào)整法,薄片斜齒輪軸向壓簧調(diào)整法,雙齒輪彈簧調(diào)整法等。
縱向進(jìn)給機(jī)構(gòu)中采用的是錐齒輪對(duì)降速傳動(dòng),由于縱向運(yùn)動(dòng)精度要求不高,并且受到的軸向力較大,為了使得運(yùn)動(dòng)穩(wěn)定、結(jié)構(gòu)簡(jiǎn)單,所以采用傳動(dòng)剛度高的剛性調(diào)整法——輪軸箱墊片調(diào)整法——消除錐齒輪間隙。
由于橫向進(jìn)給運(yùn)動(dòng)精度直接影響加工精度,故精度要求較高,必須消除傳動(dòng)間隙。橫向進(jìn)給機(jī)構(gòu)采用的是一對(duì)直齒輪降速,所以才用柔性調(diào)整法(雙片直齒輪錯(cuò)齒調(diào)整法)消除齒側(cè)間隙。
2.滾珠絲桿螺母副及其支承
滾珠絲桿螺母副是直線運(yùn)動(dòng)與回轉(zhuǎn)運(yùn)動(dòng)能相互轉(zhuǎn)換的新型傳動(dòng)裝置。其具有螺旋槽的絲桿與螺母之間裝有中間傳動(dòng)元件——滾珠。滾珠絲桿螺母機(jī)構(gòu)由絲桿、螺母、滾珠和反向器等四部分組成。當(dāng)絲桿轉(zhuǎn)動(dòng)時(shí),帶動(dòng)滾珠沿螺紋滾道滾動(dòng),為防止?jié)L珠從滾道端面掉出,在螺母的螺旋槽兩端設(shè)有滾珠回程引導(dǎo)裝置構(gòu)成滾珠的循環(huán)反向通道,從而形成滾珠流動(dòng)的閉合通路。
⑴滾珠絲桿副與滑動(dòng)絲桿副或其他直線運(yùn)動(dòng)相比,有下列特點(diǎn):
①摩擦損失小,傳動(dòng)效率高。一般滾珠絲桿副的傳動(dòng)效率達(dá)92%~96%,滑動(dòng)絲桿副的傳動(dòng)效率僅為20%~40%。
②絲桿螺母之間預(yù)緊后,可以完全消除間隙,提高傳動(dòng)剛度。
③摩擦阻力小,幾乎與運(yùn)動(dòng)速度無(wú)關(guān),動(dòng)靜摩擦力之差極小,能保證運(yùn)動(dòng)平穩(wěn)。磨損小,壽命長(zhǎng),精度保持性好。
④工作壽命長(zhǎng)。滾珠絲桿螺母副摩擦表面為高硬度(HRC58—62)、高精度,具有較長(zhǎng)的工作壽命和精度保持性。壽命約為滑動(dòng)絲桿副的4—10倍以上。
⑤定位精度和重復(fù)定位精度高。由于滾珠絲桿副摩擦小、溫升少、無(wú)爬行、無(wú)間隙,通過(guò)預(yù)緊進(jìn)行預(yù)拉伸的補(bǔ)償熱膨脹。因此可達(dá)到較高的定位精度和重復(fù)定位精度。
⑥同步性好。用幾套相同的滾珠絲桿副同時(shí)傳動(dòng)幾個(gè)相同的運(yùn)動(dòng)部件,可得到較好的同步運(yùn)動(dòng)。
⑦可靠性高。潤(rùn)滑密封裝置機(jī)構(gòu)簡(jiǎn)單,維修方便。
⑧不能自鎖,有可逆性,即能將螺旋運(yùn)動(dòng)轉(zhuǎn)換為直線運(yùn)動(dòng),或?qū)⒅本€運(yùn)動(dòng)轉(zhuǎn)換為螺旋運(yùn)動(dòng)。因此絲桿立式使用時(shí),應(yīng)增加制動(dòng)裝置。
⑨經(jīng)濟(jì)性差成本高。由于結(jié)構(gòu)工藝復(fù)雜,故制造成本較高。
⑵滾珠絲桿副軸承選用及定位方式
縱向進(jìn)給機(jī)構(gòu)中的滾珠絲桿承受的軸向載荷和徑向載荷均較大,因此對(duì)絲桿軸承的軸向和徑向的精度和剛度要求都較高。由于該磨床為小型數(shù)控機(jī)床,故采用角接觸推力球軸承。
橫向進(jìn)給機(jī)構(gòu)中的滾珠絲桿主要承受徑向力,因此采用推力軸承和滾子軸承的配合。
縱向進(jìn)給機(jī)構(gòu)和橫向進(jìn)給機(jī)構(gòu)中的滾珠絲桿長(zhǎng)度均較長(zhǎng),同時(shí)轉(zhuǎn)速也較高,因此滾珠絲桿的支承方式采用兩端固定法。
⑶滾珠絲桿螺母副間隙消除和預(yù)緊
滾珠絲桿在軸向載荷作用下,滾珠和螺紋滾道接觸區(qū)會(huì)產(chǎn)生接觸變形,接觸剛度與接觸表面預(yù)緊力成正比。如果滾珠絲桿螺母副間存在間隙,接觸剛度較??;當(dāng)滾珠絲桿反向旋轉(zhuǎn)時(shí),螺母不會(huì)立即反向,存在死區(qū),影響絲桿的傳動(dòng)精度。因此,同齒輪的傳動(dòng)副一樣,滾珠絲桿螺母副必須消除間隙,并施加預(yù)緊力,以保證絲桿、滾珠和螺母之間沒(méi)有間隙,提高螺母絲桿副的接觸剛度[10]。
本設(shè)計(jì)中采用齒差式雙螺母結(jié)構(gòu),可通過(guò)調(diào)整兩個(gè)螺母之間的軸向位置,使兩螺母的滾珠在承受工作載荷前,分別與絲桿的兩個(gè)不同的側(cè)面接觸,產(chǎn)生一定的預(yù)緊力,以達(dá)到提高軸向剛度的目的。
齒差式調(diào)整法:作用螺母法蘭外圓上制有外齒輪,齒數(shù)常相差1。這兩個(gè)外齒輪又與固定在螺母體兩側(cè)的兩個(gè)齒數(shù)相同的內(nèi)齒圈相嚙合,調(diào)整方法是兩個(gè)螺母相對(duì)其嚙合的內(nèi)齒圈同向都轉(zhuǎn)一個(gè)齒。
4.2 導(dǎo)軌設(shè)計(jì)
4.2.1 導(dǎo)軌應(yīng)滿足的要求
機(jī)床導(dǎo)軌是用來(lái)引導(dǎo)機(jī)床上運(yùn)動(dòng)不見(jiàn)的運(yùn)動(dòng)方向,使刀架、溜板和工作臺(tái)等沿一定的軌跡準(zhǔn)確的相對(duì)運(yùn)動(dòng),并使機(jī)床部件得到準(zhǔn)確定位。故導(dǎo)軌是機(jī)床的關(guān)鍵部件之一,其性能好壞,將直接影響機(jī)床的加工精度、承載能力和使用壽命。
導(dǎo)軌應(yīng)滿足精度高、承載能力大、剛度好、摩擦阻力小、運(yùn)動(dòng)平穩(wěn)、精度保持性好、壽命長(zhǎng)、結(jié)構(gòu)簡(jiǎn)單、工藝性好,便于加工、裝配、調(diào)整和維修、成本低等要求。其中下面為幾個(gè)基本方面的要求:
1. 導(dǎo)向精度 導(dǎo)向精度是指導(dǎo)軌運(yùn)動(dòng)軌跡的準(zhǔn)確性,足夠高的導(dǎo)向精度是保證機(jī)床加工精度的前提,因此它是對(duì)導(dǎo)軌的最基本要求。影響導(dǎo)向精度的因素很多,如導(dǎo)軌幾何精度和接觸精度,導(dǎo)軌的結(jié)構(gòu)型式,導(dǎo)軌和支承件的剛度,導(dǎo)軌的油膜厚度和油膜剛度,導(dǎo)軌和支承件的熱變形等等。
直線運(yùn)動(dòng)導(dǎo)軌的幾何精度一般包括導(dǎo)軌在豎直平面內(nèi)的直線度、導(dǎo)軌在水平面內(nèi)的直線度和導(dǎo)軌面之間的平行度。
接觸精度指導(dǎo)軌副間磨擦面實(shí)際接觸面積占理論接觸面積的百分比,或用著色法檢查25×25mm面積內(nèi)的接觸點(diǎn)數(shù)。不同加工方法所生成的導(dǎo)軌表面,檢查的標(biāo)準(zhǔn)是不同的。
2.耐磨性好,導(dǎo)軌原有精度喪失的主要原因就是磨損,沿導(dǎo)軌全長(zhǎng)的均勻和不均勻磨損,都會(huì)直接影響其導(dǎo)向精度。因此導(dǎo)軌的耐磨性是決定導(dǎo)向精度保持性的關(guān)鍵,也是衡量機(jī)床質(zhì)量的重要指標(biāo)之一,應(yīng)盡可能提高導(dǎo)軌的耐磨性。影響導(dǎo)軌的耐磨性的主要因素有:導(dǎo)軌的摩擦性質(zhì)、材料、熱處理及加工的工藝方法、受力情況、潤(rùn)滑和防護(hù)等。
3. 承載能力大,剛度好 根據(jù)導(dǎo)軌承受載荷的性質(zhì)、方向和大小,合理的選擇導(dǎo)軌的截面形狀和尺寸,使導(dǎo)軌具有足夠的剛度,保證機(jī)床的加工精度。
4.低速運(yùn)動(dòng)平穩(wěn) 擋動(dòng)導(dǎo)軌作低速運(yùn)動(dòng)或微量進(jìn)給時(shí),應(yīng)保證運(yùn)動(dòng)始終平穩(wěn),不出現(xiàn)爬行現(xiàn)象。影響低速運(yùn)動(dòng)平穩(wěn)性的因素有導(dǎo)軌的結(jié)構(gòu)形式、潤(rùn)滑情況、導(dǎo)軌摩擦面的靜、動(dòng)摩擦系數(shù)的差值,以及窗洞導(dǎo)軌運(yùn)動(dòng)的傳動(dòng)系剛度。
5.結(jié)構(gòu)簡(jiǎn)單、工藝性好導(dǎo)軌要求結(jié)構(gòu)簡(jiǎn)單,易于加工[11]。
4.2.2 導(dǎo)軌的作用及分類(lèi)
導(dǎo)軌按結(jié)構(gòu)方式可分為兩類(lèi):開(kāi)式導(dǎo)軌和閉式導(dǎo)軌。
開(kāi)式導(dǎo)軌是指在部件自重和載荷的作用下,運(yùn)動(dòng)導(dǎo)軌和支承導(dǎo)軌的工作面始終保持接觸、貼合,其特點(diǎn)是結(jié)構(gòu)簡(jiǎn)單,但不能承受較大的顛覆力矩的作用。
閉式導(dǎo)軌當(dāng)顛覆力矩作用在導(dǎo)軌上時(shí),僅靠自重不能使主導(dǎo)軌面始終接觸,借助于壓板形成輔助導(dǎo)軌面,導(dǎo)軌才能承受較大的顛覆力矩作用,并保證支承導(dǎo)軌與動(dòng)導(dǎo)軌的工作面始終保持可靠的接觸。
根據(jù)結(jié)構(gòu)需要橫向進(jìn)給傳動(dòng)和縱向進(jìn)給傳動(dòng)結(jié)構(gòu)都選擇開(kāi)式導(dǎo)軌。
4.2.3 導(dǎo)軌的類(lèi)型及其選擇
直線運(yùn)動(dòng)導(dǎo)軌的截面形狀主要有四種:矩形、三角形、燕尾形和圓形,并都是凸、凹之分。水平放置的凸形導(dǎo)軌不易積存切屑,但也不易存油,多用于低速工作條件;凹形導(dǎo)軌易存潤(rùn)滑油,可用于高速工作條件,但必須有可靠的防護(hù)裝置,以免切屑等物落在導(dǎo)軌面上。
矩形導(dǎo)軌:矩形導(dǎo)軌具有承載能力大、剛度高、制造簡(jiǎn)便、檢驗(yàn)和維修方便等優(yōu)點(diǎn);但有著側(cè)向間隙,要用鑲條調(diào)整,導(dǎo)向性差。
三角形導(dǎo)軌:三角形導(dǎo)軌面磨損時(shí),動(dòng)導(dǎo)軌會(huì)自動(dòng)下沉,自動(dòng)補(bǔ)償磨損量,不會(huì)產(chǎn)生間隙。三角形導(dǎo)軌的頂角α一般在90°~120°范圍內(nèi)變化,α角越小,導(dǎo)向性越好,但摩擦力也越大。
燕尾形導(dǎo)軌:燕尾開(kāi)導(dǎo)軌可以承受較大的顛覆力矩,導(dǎo)軌的高度較小,結(jié)構(gòu)緊湊,間隙調(diào)整方便。但是,剛度較差,加工、檢驗(yàn)不方便。
圓柱形導(dǎo)軌:圓柱形導(dǎo)軌制造方便,工藝性好,但磨損后較難調(diào)整和補(bǔ)償間隙。主要用于受軸向負(fù)荷的導(dǎo)軌,應(yīng)用較少。
4.2.4導(dǎo)軌設(shè)計(jì)
根據(jù)以上要求,縱向?qū)к壊捎秒p三角導(dǎo)軌,雙三角導(dǎo)軌不需要鑲條調(diào)整間隙,接觸剛度好,導(dǎo)向性和精度保持性好,但是工藝性差,加工、檢驗(yàn)和維修不方便。
由于鑄鐵導(dǎo)軌有良好的抗振性、工藝性和耐磨性,因此采用鑄鐵導(dǎo)軌。同時(shí)為了提高導(dǎo)軌耐磨性和防止撕裂,在導(dǎo)軌副中,動(dòng)導(dǎo)軌采用鑄鐵,不淬火,支承導(dǎo)軌采用淬火鋼。
4.3 機(jī)構(gòu)設(shè)計(jì)
4.3.1 縱向進(jìn)給機(jī)構(gòu)設(shè)計(jì)
縱向進(jìn)給機(jī)構(gòu)圖如圖4.1所示(詳見(jiàn)A0⑴號(hào)圖紙)。
縱向進(jìn)給機(jī)構(gòu)運(yùn)動(dòng)說(shuō)明:自動(dòng)進(jìn)給時(shí),手輪向外拉,使與手輪相連的錐齒輪和帶動(dòng)滾珠絲桿的錐齒輪分開(kāi),為了保證在自動(dòng)進(jìn)給時(shí)手輪不會(huì)因?yàn)槠渖系腻F齒輪不小心和大錐齒輪相碰而影響安全操作,在手輪軸上有兩條相距為16.5mm的溝槽,往后拉動(dòng)手輪到一定位置時(shí),由安裝在箱體上的一個(gè)彈簧滾珠將其定位,手輪便不會(huì)被輕易推向里而碰到大錐齒輪。同樣手動(dòng)時(shí),把手輪往里推,到一定位置時(shí)滾珠就會(huì)定在后面的溝槽內(nèi),起到限位作用,只是手輪上的錐齒輪和大錐齒輪嚙合,搖動(dòng)手輪,齒輪嚙合將運(yùn)動(dòng)傳給滾珠絲桿,帶動(dòng)工作臺(tái)作縱向運(yùn)動(dòng)。
圖4.1 縱向進(jìn)給機(jī)構(gòu)圖
4.3.2 橫向進(jìn)給機(jī)構(gòu)設(shè)計(jì)
橫向進(jìn)給機(jī)構(gòu)圖詳見(jiàn)A0(8)號(hào)圖紙
橫向手動(dòng)進(jìn)給時(shí)應(yīng)將捏手松開(kāi),使斜齒輪與手輪空轉(zhuǎn),然后將手輪向前推,使齒型離合器相接合(此時(shí)拉桿以將齒輪副脫開(kāi))搖動(dòng)手柄,經(jīng)手輪、軸、聯(lián)軸器,轉(zhuǎn)動(dòng)滾珠絲桿,使?jié)L珠螺母移動(dòng),帶動(dòng)拖板做橫向進(jìn)給運(yùn)動(dòng)。手動(dòng)微動(dòng)進(jìn)給基本上與手搖進(jìn)給相同,此時(shí)應(yīng)將捏手?jǐn)Q緊,使斜齒輪與手輪結(jié)合在一起,然后使齒型離合器接合,轉(zhuǎn)動(dòng)蝸桿上的捏手,經(jīng)蝸桿、斜齒輪嚙合傳動(dòng)軸,其余傳動(dòng)與上面相同。橫向自動(dòng)進(jìn)給的動(dòng)力為伺服電機(jī),在它的輸出軸上裝有齒輪,經(jīng)與它嚙合的齒輪而傳動(dòng)軸(此時(shí)應(yīng)將齒型離合器分開(kāi))經(jīng)聯(lián)軸器使?jié)L珠絲桿轉(zhuǎn)動(dòng),滾珠絲母是緊固在拖板上的,因此式拖板做橫向自動(dòng)進(jìn)給。
第5章 硬件電路設(shè)計(jì)
數(shù)控機(jī)床是用數(shù)字代碼形式的信息(程序指令),控制刀具按給定的工作程序、運(yùn)動(dòng)速度和軌跡進(jìn)行自動(dòng)加工的機(jī)床,數(shù)控系統(tǒng)技術(shù)的突飛猛進(jìn)為數(shù)控機(jī)床的技術(shù)進(jìn)步提供了條件。
數(shù)控機(jī)床具有廣泛的適應(yīng)性,加工對(duì)象改變時(shí)只需要改變輸入的程序指令;加工性能比一般自動(dòng)機(jī)床高,可以精確加工復(fù)雜型面,因而適合于加工中小批量、改型頻繁、精度要求高、形狀又較復(fù)雜的工件,并能獲得良好的經(jīng)濟(jì)效果.
隨著科學(xué)技術(shù)的發(fā)展,世界先進(jìn)制造技術(shù)的興起和不斷成熟,對(duì)數(shù)控加工技術(shù)提出了更重要的要求,超高速切削、超精密加工技術(shù)等的應(yīng)用,要求數(shù)控機(jī)床的各個(gè)組成部分具有更高的性能指標(biāo)。當(dāng)今的數(shù)控機(jī)床正在不斷采用最新技術(shù)成就,隨著高速化、高精度化、多功能化、智能化、系統(tǒng)化與高可靠性等方向發(fā)展。
本機(jī)床采用的是西門(mén)子數(shù)控系統(tǒng),西門(mén)系數(shù)控系統(tǒng),以較好的穩(wěn)定性和較優(yōu)的性能價(jià)格比,在我國(guó)數(shù)控機(jī)床行業(yè)被廣泛應(yīng)用。
802D數(shù)控系統(tǒng)是西門(mén)子數(shù)控系統(tǒng)中的一款高性能、低價(jià)位的數(shù)控系統(tǒng)。它可以控制四個(gè)數(shù)字進(jìn)給軸和一個(gè)主軸,能實(shí)現(xiàn)三軸聯(lián)動(dòng)。它不僅廣泛用于企業(yè)中的數(shù)控銑床和數(shù)控車(chē)床,而且對(duì)于學(xué)校數(shù)控技術(shù)實(shí)驗(yàn)平臺(tái)的搭建也是較佳的選擇。
1.西門(mén)子802D數(shù)控系統(tǒng)的構(gòu)成
802D由PCU(Panel Control Unit)、一塊水平安裝或垂直安裝的鍵盤(pán)(CNC KEYBOARD)、一塊或兩塊輸入、輸出模塊(I/O MODULE)、驅(qū)動(dòng)器(SIMODRIVE 611 universal E)、1FK6系列的數(shù)字伺服電機(jī)(1FK6 FEED MOTORS)和1PH7系列的數(shù)字主軸電機(jī)(1PH7 SPINDLE)組成,外加一個(gè)24V電源。
另外,802D數(shù)控系統(tǒng)也有一些選,如電子手輪(HANDWHEEL)、機(jī)床控制面板(MCP)等。
2.802D數(shù)控系統(tǒng)的連接
802D系統(tǒng)的各個(gè)不見(jiàn)通過(guò)現(xiàn)場(chǎng)總線PROFIBUS連接。其中PCU繼承了PROFIBUS接口、鍵盤(pán)、三個(gè)手輪接口以及PCMCIA接口(用語(yǔ)數(shù)據(jù)備份)。PLC繼承于PCU中。
802D系統(tǒng)各部件的連接如下:
首先確保24V直流電源為PCU和I/O接口提供電源。
機(jī)床控制面板通過(guò)50芯扁平電纜直接與PCU連接。將I/O模塊和驅(qū)動(dòng)模塊分別通過(guò)PROFIBUS總線與PCU線連;驅(qū)動(dòng)模塊為伺服惦記和主軸惦記提供電源,同時(shí)伺服電機(jī)和主軸電機(jī)通過(guò)反饋電纜將信號(hào)反饋驅(qū)動(dòng)模塊,進(jìn)而通過(guò)PROFIBUS總線反饋給PCU[13]。
檢查系統(tǒng)接線是否正確,可以通過(guò)按MCP的按件,查看數(shù)控系統(tǒng)PLC的狀態(tài)表,如果狀態(tài)表中的地址發(fā)生變化,則說(shuō)明接線基本正確。
802D型數(shù)控系統(tǒng)的組成主要有以下幾個(gè)部分:
⑴面板控制單元和全數(shù)控的鍵盤(pán)(OP)—這是SINUMERIX 802D數(shù)控系統(tǒng)(CNC)的主體部分,其中包括有CNC的CPU(稱(chēng)之PCU)、面板控制單元和全數(shù)控的鍵盤(pán);
⑵I/O模塊PP72/48為PLC部分,其提供了72點(diǎn)數(shù)字輸入河48點(diǎn)數(shù)字輸出。通過(guò)三個(gè)連接器河扁平電纜與外界信號(hào)連接。與OP通過(guò)PRFOBUS連接。
⑶機(jī)床控制面板(MCP)—為機(jī)床操作控制用,其中包括有機(jī)床操作所需要的全部按鈕,如果工作墨臺(tái)選擇選鈕、倍率開(kāi)關(guān)、NC啟動(dòng)和進(jìn)給保持按鈕、各軸正、負(fù)點(diǎn)動(dòng)鈕、電子手輪、相應(yīng)機(jī)床動(dòng)作的控制鈕等等。通過(guò)兩根扁平電纜與PP72/48 I/O模塊相連接。
⑷SIMODRIVE 611驅(qū)動(dòng)系統(tǒng)和交流伺服電機(jī)—為CN的執(zhí)行單元。利用SIMODRIVE 611,西門(mén)子公司提供了數(shù)字化的驅(qū)動(dòng)系統(tǒng)來(lái)滿足機(jī)床在動(dòng)態(tài)響應(yīng),伺度調(diào)整范圍和旋轉(zhuǎn)精度等特性等反面的要求。其與PCU的連接也是通過(guò)PROFIBUS接口完成的。所需的模塊,如電源模塊和功率模塊,要根據(jù)點(diǎn)的大小來(lái)選擇。進(jìn)給軸推薦選用1FK5電機(jī),而主軸推薦用IPH7電機(jī)。
⑸SITOP電源—以上CNC的組成部分均需要直流電源供電,而且要求電源應(yīng)保證在惡劣的電網(wǎng)波動(dòng)下能保持精確穩(wěn)定的輸出。。802D PCU的功耗為24VDC 50W,PP72/48 I/O模塊外部輸出信號(hào)的24VDC電源的功耗需要根據(jù)機(jī)床實(shí)際使用的輸出位數(shù)從及同時(shí)系數(shù)計(jì)算得出。
⑹根據(jù)SIMENS公司的建議:系統(tǒng)應(yīng)使用兩個(gè)獨(dú)立的支流電源,一個(gè)用于802D的PCU、PP72/48和輸入信號(hào)的公共端