秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.1 二元一次不等式(組)與簡單的線性規(guī)劃問題課件 文.ppt

上傳人:tia****nde 文檔編號:14164998 上傳時間:2020-07-08 格式:PPT 頁數(shù):37 大小:2.68MB
收藏 版權(quán)申訴 舉報 下載
廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.1 二元一次不等式(組)與簡單的線性規(guī)劃問題課件 文.ppt_第1頁
第1頁 / 共37頁
廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.1 二元一次不等式(組)與簡單的線性規(guī)劃問題課件 文.ppt_第2頁
第2頁 / 共37頁
廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.1 二元一次不等式(組)與簡單的線性規(guī)劃問題課件 文.ppt_第3頁
第3頁 / 共37頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.1 二元一次不等式(組)與簡單的線性規(guī)劃問題課件 文.ppt》由會員分享,可在線閱讀,更多相關(guān)《廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.1 二元一次不等式(組)與簡單的線性規(guī)劃問題課件 文.ppt(37頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第七章不等式、推理與證明,7.1二元一次不等式(組) 與簡單的線性規(guī)劃問題,知識梳理,雙基自測,2,1,1.二元一次不等式表示的平面區(qū)域 (1)一般地,二元一次不等式Ax+By+C0在平面直角坐標系中表示直線Ax+By+C=0某一側(cè)所有點組成的.我們把直線畫成虛線以表示區(qū)域邊界直線.當我們在平面直角坐標系中畫不等式Ax+By+C0所表示的平面區(qū)域時,此區(qū)域應(yīng)邊界直線,則把邊界直線畫成. (2)因為對直線Ax+By+C=0同一側(cè)的所有點(x,y),把它的坐標(x,y)代入Ax+By+C,所得的符號都,所以只需在此直線的同一側(cè)取一個特殊點(x0,y0)作為測試點,由Ax0+By0+C的即可判斷A

2、x+By+C0表示的是直線Ax+By+C=0哪一側(cè)的平面區(qū)域.,平面區(qū)域,不包括,包括,實線,相同,符號,,,知識梳理,雙基自測,2,1,(3)利用“同號上,異號下”判斷二元一次不等式表示的平面區(qū)域:當B(Ax+By+C)0時,區(qū)域為直線Ax+By+C=0的; 當B(Ax+By+C)<0時,區(qū)域為直線Ax+By+C=0的. 注:其中Ax+By+C的符號是給出的二元一次不等式的符號. (4)由幾個不等式組成的不等式組所表示的平面區(qū)域,是各個不等式所表示的平面區(qū)域的公共部分.,上方,下方,知識梳理,雙基自測,2,1,2.線性規(guī)劃的相關(guān)概念,線性約束條件,可行解,最大值,最小值,最大值,最小值,,2

3、,知識梳理,雙基自測,3,4,1,5,1.下列結(jié)論正確的打“”,錯誤的打“”. (1)不等式x-y-10表示的平面區(qū)域一定在直線x-y-1=0的上方. () (2)兩點(x1,y1),(x2,y2)在直線Ax+By+C=0異側(cè)的充要條件是(Ax1+By1+C)(Ax2+By2+C)<0.() (3)任何一個二元一次不等式組都表示平面上的一個區(qū)域.() (4)線性目標函數(shù)取得最值的點一定在可行域的頂點或邊界上. () (5)在目標函數(shù)z=ax+by(b0)中,z的幾何意義是直線ax+by-z=0在y軸上的截距.(),答案,知識梳理,雙基自測,2,3,4,1,5,2.下列各點中,不在x+y-10表

4、示的平面區(qū)域內(nèi)的是() A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3),答案,解析,知識梳理,雙基自測,2,3,4,1,5,3.若點(m,1)在不等式2x+3y-50所表示的平面區(qū)域內(nèi),則m的取值范圍是() A.m1B.m1C.m1,答案,解析,知識梳理,雙基自測,2,3,4,1,5,答案,解析,知識梳理,雙基自測,2,3,4,1,5,答案,解析,知識梳理,雙基自測,2,3,4,1,5,自測點評 1.當二元一次不等式組中的不等式所表示的區(qū)域沒有公共部分時,就無法表示平面上的一個區(qū)域. 2.線性目標函數(shù)都是通過平移直線,在與可行域有公共點的情況下,分析其在y軸上的截距的取值范圍,

5、所以取得最值的點一定在可行域的頂點或邊界上. 3.求線性目標函數(shù)z=ax+by(ab0)的最值,當b0時,若直線過可行域且在y軸上截距最大,則z值最大;若在y軸上截距最小,則z值最小;當b<0時,則相反.,考點1,考點2,考點3,思考如何確定二元一次不等式(組)表示的平面區(qū)域?,D,D,考點1,考點2,考點3,解析:(1)如圖,不等式組表示的平面區(qū)域是AOC,當a從-2連續(xù)變化到1時,動直線x+y=a掃過中的那部分區(qū)域為圖中的四邊形AODE,其面積為,考點1,考點2,考點3,考點1,考點2,考點3,解題心得確定二元一次不等式(組)表示的平面區(qū)域的方法: (1)“直線定界,特殊點定域”,即先作直

6、線,再取特殊點并代入不等式(組).若滿足不等式(組),則不等式(組)表示的平面區(qū)域為直線與特殊點同側(cè)的那部分區(qū)域;否則就表示直線與特殊點異側(cè)的那部分區(qū)域. (2)若不等式帶等號,則邊界為實線;若不等式不帶等號,則邊界為虛線.,考點1,考點2,考點3,考點1,考點2,考點3,考點1,考點2,考點3,(2)兩條直線方程分別為x-2y+2=0與x+y-1=0. 把x=0,y=0代入x-2y+2得2,可知直線x-2y+2=0右下方所表示的二元一次不等式為x-2y+20, 把x=0,y=0代入x+y-1得-1,可知直線x+y-1=0右上方所表示的二元一次不等式為x+y-10,,考點1,考點2,考點3,考

7、向一求線性目標函數(shù)的最值,A.0B.1C.2D.3 思考怎樣利用可行域求線性目標函數(shù)的最值?,答案,解析,考點1,考點2,考點3,考向二已知目標函數(shù)的最值求參數(shù)的取值 A.-1,2B.-2,1 C.-3,-2D.-3,1 思考如何利用可行域及最優(yōu)解求參數(shù)及其范圍?,答案,解析,考點1,考點2,考點3,考向三求非線性目標函數(shù)的最值 A.4B.9C.10D.12 思考如何利用可行域求非線性目標函數(shù)最值?,答案,解析,考點1,考點2,考點3,解題心得1.利用可行域求線性目標函數(shù)最值的方法:首先利用約束條件作出可行域,然后根據(jù)目標函數(shù)找到最優(yōu)解時的點,最后把解得點的坐標代入求解即可. 2.利用可行域

8、及最優(yōu)解求參數(shù)及其范圍的方法:(1)若限制條件中含參數(shù),依據(jù)參數(shù)的不同范圍將各種情況下的可行域畫出來,尋求最優(yōu)解,確定參數(shù)的值;(2)若線性目標函數(shù)中含有參數(shù),可對線性目標函數(shù)的斜率分類討論,以此來確定線性目標函數(shù)經(jīng)過哪個頂點取得最值,從而求出參數(shù)的值;也可以直接求出線性目標函數(shù)經(jīng)過各頂點時對應(yīng)的參數(shù)的值,然后進行檢驗,找出符合題意的參數(shù)值. 3.利用可行域求非線性目標函數(shù)最值的方法:畫出可行域,分析目標函數(shù)的幾何意義是斜率問題還是距離問題,依據(jù)幾何意義可求得最值.,考點1,考點2,考點3,6,A,考點1,考點2,考點3,D,B,考點1,考點2,考點3,解析:(1)作出可行域,如圖陰影部分所示

9、(包括邊界).,顯然l過點B(2,0)時,z取最大值,zmax=32+0=6.,考點1,考點2,考點3,考點1,考點2,考點3,(3)作出約束條件所表示的平面區(qū)域如圖(陰影部分),其中A(0,1),B(1,0),C(3,4).,考點1,考點2,考點3,(4)如圖所示,不等式組表示的平面區(qū)域是ABC的內(nèi)部(含邊界),x2+y2表示的是此區(qū)域內(nèi)的點(x,y)到原點距離的平方.從圖中可知最短距離為原點到直線BC的距離,其值為1;最遠距離為AO,其值為2,故x2+y2的取值范圍是1,4.,考點1,考點2,考點3,例5電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)

10、劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:,已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600 min,廣告的總播放時間不少于30 min,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).,考點1,考點2,考點3,(1)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域; (2)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多? 思考求解線性規(guī)劃的實際問題要注意什么?,考點1,考點2,考點3,該二元一次不等式組所表示的平面區(qū)域為圖1中的陰影部分:,考點1,考點2,考點3,(2)設(shè)總收視人次為z萬,

11、則目標函數(shù)為z=60 x+25y.,所以,電視臺每周播出甲連續(xù)劇6次,乙連續(xù)劇3次時才能使總收視人次最多.,考點1,考點2,考點3,考點1,考點2,考點3,解題心得求解線性規(guī)劃的實際問題要注意兩點: (1)設(shè)出未知數(shù)x,y,并寫出問題中的約束條件和目標函數(shù),注意約束條件中的不等式是否含有等號; (2)判斷所設(shè)未知數(shù)x,y的取值范圍,分析x,y是否為整數(shù)、非負數(shù)等.,考點1,考點2,考點3,對點訓(xùn)練3(2018北京海濱二模)A,B兩個居民小區(qū)的居委會欲組織本小區(qū)的中學(xué)生利用雙休日去市郊的敬老院參加獻愛心活動.兩個校區(qū)每名同學(xué)的往返車費及服務(wù)老人的人數(shù)如下表:,根據(jù)安排,去敬老院的往返總車費不能超

12、過37元,且B小區(qū)參加獻愛心活動的同學(xué)比A小區(qū)的同學(xué)至少多1人,則接受服務(wù)的老人最多有人.,答案,解析,考點1,考點2,考點3,線性目標函數(shù)最值問題的常見類型及解題策略: (1)求線性目標函數(shù)的最值.線性目標函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,因此對于一般的線性規(guī)劃問題,我們可以直接解出可行域的頂點,然后將坐標代入目標函數(shù)求出相應(yīng)的數(shù)值,從而確定目標函數(shù)的最值. (2)由目標函數(shù)的最值求參數(shù).求解線性規(guī)劃中含參問題的基本方法有兩種:一是把參數(shù)當成常數(shù)用,根據(jù)線性規(guī)劃問題的求解方法求出最優(yōu)解,代入目標函數(shù)確定最值,通過構(gòu)造方程或不等式求解參數(shù)的值或取值范圍;二是先分離含有參數(shù)的式子,通過觀察的方法確定含參的式子所滿足的條件,確定最優(yōu)解的位置,從而求出參數(shù).,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!