11、滿足2xy30,則的最小值為 A.2 B.3 C.4 D.5,,解析由2xy30,得2xy3,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.(2018金華十校調(diào)研)設(shè)x,yR,下列不等式成立的是 A.1|xy||xy||x||y|B.12|xy||x||y| C.12|xy||x||y|D.|xy|2|xy||x||y|,,,解析對(duì)于選項(xiàng)B,令x100,y100,不成立;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6.(2018杭州學(xué)軍中學(xué)模擬)設(shè)關(guān)于x,y的不等式組 表示 的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)
12、滿足x02y03,則實(shí)數(shù)m的取值范圍是 A.(1,0) B.(0,1) C.(1,) D.(,1),,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,解析作出滿足不等式組的平面區(qū)域, 如圖中陰影部分所示(包含邊界), 當(dāng)目標(biāo)函數(shù)zx2y經(jīng)過(guò)直線xm0與ym0的交點(diǎn)時(shí)取得最大值, 即zmaxm2m3m,則根據(jù)題意有3m3,即m<1,故選D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,7.(2018浙江舟山中學(xué)月考)已知x,y滿足約束條件 當(dāng)目標(biāo)函數(shù)z axby(a0,b0)在該約束條件下取到最小值 時(shí),a
13、2b2的最小值為 A.5 B.4 C. D.2,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析畫出滿足約束條件的可行域如圖中陰影部分(包含邊界)所示,可知當(dāng)目標(biāo)函數(shù)過(guò)直線xy10與2xy30的交點(diǎn)A(2,1)時(shí)取得最小值,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.(2018嘉興教學(xué)測(cè)試)若直線axby1與不等式組 表示的平面區(qū)域無(wú)公共點(diǎn),則2a3b的取值范圍是 A.(7,1) B.(3,5) C.(7,3) D.R,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,
14、1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,所以2a3b的取值范圍為(7,3),故選C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,9.(2019諸暨期末)不等式x22x3<0的解集為_(kāi)______________________;不等式|32x|<1的解集為_(kāi)_____.,,(,1)(3,),(1,2),解析依題意,不等式x22x30, 解得x3, 因此不等式x22x3<0的解集是(,1)(3,); 由|32x|<1得1<32x<1,1
15、,8,9,10,11,12,13,14,15,16,10.(2018寧波期末)關(guān)于實(shí)數(shù)x的不等式x24x3在0,5上有解,則實(shí)數(shù)a的取 值范圍為_(kāi)____________________.,,又因?yàn)閤24x3(x2)27, 所以當(dāng)x5時(shí),x24x3取得最大值2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,11.(2018嘉興測(cè)試)已知f(x)x2,g(x)2x5,則不等式|f(x)||g(x)|2的解集為_(kāi)_______;|f(2x)||g(x)|的最小值為_(kāi)___.,,3,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,
16、2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,|f(2x)||g(x)|的圖象如圖,則由圖象易得|f(2x)||g(x)|的最小值為3.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.(2018浙江金華十校聯(lián)考)已知實(shí)數(shù)x,y,z滿足 則xyz的最小值為_(kāi)__________.,,技能提升練,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
17、15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.(2018寧波模擬)若6x24y26xy1,x,yR,則x2y2的最大值為_(kāi)____.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析方法一設(shè)mxy,nxy,則問(wèn)題轉(zhuǎn)化為“已知4m2mnn21,求mn的最大值”. 由基本不等式,知1mn4m2n2mn4|mn|,,,方法二(齊次化處理)顯然要使得目標(biāo)函數(shù)取到最大值,x0.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,當(dāng)且僅當(dāng)x3y時(shí)取等號(hào).,,1,2,3,4,5,6,7,8,9
18、,10,11,12,13,14,15,16,15.(2019浙江嘉興一中模擬)已知點(diǎn)P是平面區(qū)域M: 內(nèi)的任意一 點(diǎn),則P,,拓展沖刺練,到平面區(qū)域M的邊界的距離之和的取值范圍為_(kāi)_________.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,設(shè)P到邊界AO,BO,AB的距離分別為a,b,c,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,如圖,P為可行域內(nèi)任意一點(diǎn),過(guò)P作PEx軸,PFy軸,PPAB,過(guò)P作PEx軸,PFy軸,,則有PEPFPPPFPE,由P(b,a),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,