《周期函數(shù)的傅立葉級數(shù).ppt》由會員分享,可在線閱讀,更多相關(guān)《周期函數(shù)的傅立葉級數(shù).ppt(49頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、8-5 傅里葉級數(shù)展開,研究周期(函數(shù))現(xiàn)象產(chǎn)生; 三角函數(shù)是最簡單的周期函數(shù); 任何周期函數(shù)都可以用正弦函數(shù)和余弦函數(shù)構(gòu)成的級數(shù)表示;,傅里葉(Fourier),也譯作傅立葉,法國數(shù)學家、物理學家。 1768年3月21日生于歐塞爾,1830年5月16日卒于巴黎。 9歲父母雙亡, 被當?shù)亟烫檬震B(yǎng)。 12歲由一主教送入地方軍事學校讀書。 17歲(1785)回鄉(xiāng)教數(shù)學。 1794到巴 黎,成為高等師范學校的首批學員,次年到巴黎綜合工科學校執(zhí)教。 1798年隨拿破侖遠征埃及時任軍中文書和埃及研究院秘書,1801年回國后任伊澤爾省地方長官。 1817年當選為科學院院士,1822年任該院終身秘書。 數(shù)學
2、方面 主要貢獻是在研究熱的傳播時創(chuàng)立了一套數(shù)學理論。1807年向巴黎科學院呈交熱的傳播論文,推導出著名的熱傳導方程 ,并在求解該方程時發(fā)現(xiàn)解函數(shù)可以由三角函數(shù)構(gòu)成的級數(shù)形式表示,從而提出任一函數(shù)都可以展成三角函數(shù)的無窮級數(shù)。傅立葉級數(shù)(即三角級數(shù))、傅立葉分析等理論均由此創(chuàng)始。 物理方面 他是傅立葉定律的創(chuàng)始人,1822 年在代表作熱的分析理論中解決了熱在非均勻加熱的固體中分布傳播問題,成為分析學在物理中應(yīng)用的最早例證之一,對19 世紀的理論物理學的發(fā)展產(chǎn)生深遠影響。,本節(jié)內(nèi)容,一、三角級數(shù)及三角函數(shù)系的正交性 二、周期函數(shù)展開為傅里葉級數(shù) 三、正弦級數(shù)和余弦級數(shù) 四、一般周期函數(shù)的傅里葉級數(shù)
3、 五、任意區(qū)間上非周期函數(shù)的傅里葉級數(shù) P316,自學,三角函數(shù)公式:,誘導公式:,一、三角級數(shù)及三角函數(shù)系的正交性,簡單的周期運動:,(諧波函數(shù)),( A為振幅,,復(fù)雜的周期運動:,令,得函數(shù)項級數(shù),,,,,,,,,為角頻率,,為初相 ),(諧波迭加),,稱上述形式的級數(shù)為三角級數(shù).,2、三角函數(shù)系的正交性,,,基; 單位正交;,,,,,,,,,,,,,4、函數(shù)的周期性延拓(P312),,,,,,,,,,正弦級數(shù)為:,練習 將函數(shù),級數(shù) .,則,解: 將 f (x)延拓成以,展成傅里葉,2為周期的函數(shù) F(x) ,,利用此展式可求出幾個特殊的級數(shù)的和.,當 x = 0 時, f (0) =
4、0 , 得,,說明:,設(shè),已知,又,作業(yè):,P317,習題8-5,1(1) , 3。,小結(jié):,1. 周期為 2 的函數(shù)的傅里葉級數(shù)及收斂定理,其中,,注意: 若,為間斷點,,則級數(shù)收斂于,2. 周期為 2 的奇、偶函數(shù)的傅里葉級數(shù),奇函數(shù),,正弦級數(shù),偶函數(shù),,余弦級數(shù),3. 在 0 , 上函數(shù)的傅里葉展開法,作奇周期延拓 ,,展開為正弦級數(shù),作偶周期延拓 ,,展開為余弦級數(shù),1. 在 0 , 上的函數(shù)的傅里葉展開唯一嗎 ?,答: 不唯一 , 延拓方式不同級數(shù)就不同 .,思考:,處收斂于,2.,,則它的傅里葉級數(shù)在,在,處收斂于 .,提示:,設(shè)周期函數(shù)在一個周期內(nèi)的表達式為,,,,3
5、. 設(shè),又設(shè),求當,的表達式 .,解: 由題設(shè)可知應(yīng)對,作奇延拓:,,由周期性:,,為周期的正弦級數(shù)展開式的和函數(shù),,定義域,4. 寫出函數(shù),,傅氏級數(shù)的和函數(shù) .,,答案:,備用題 1.,,葉級數(shù)展式為,則其中系,提示:,,,,,利用“偶倍奇零”,,(93 考研),的傅里,2. 設(shè),是以 2 為周期的函數(shù) ,,其傅氏系數(shù)為,則,的傅氏系數(shù),提示:,令,,狄利克雷 (18 05 1859),,德國數(shù)學家.,對數(shù)論, 數(shù)學分析和,數(shù)學物理有突出的貢獻,,是解析數(shù)論,他是最早提倡嚴格化,方法的數(shù)學家.,函數(shù) f (x) 的傅里葉級數(shù)收斂的第一個充分條件;,了改變絕對收斂級數(shù)中項的順序不影響級數(shù)的和,,舉例說明條件收斂級數(shù)不具有這樣的性質(zhì).,他的主要,的創(chuàng)始人之一,,并,論文都收在狄利克雷論文集 (1889一1897)中.,1829年他得到了給定,證明,