《2012年高考數(shù)學(xué) 考點(diǎn)24 等比數(shù)列及其前n項(xiàng)和》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2012年高考數(shù)學(xué) 考點(diǎn)24 等比數(shù)列及其前n項(xiàng)和(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、考點(diǎn)24 等比數(shù)列及其前n項(xiàng)和
一、選擇題
1.(2012·新課標(biāo)全國(guó)高考理科·T5)已知為等比數(shù)列,,,則( )
A. 7 B. 5 C. -5 D. -7
【解題指南】利用等比數(shù)列的性質(zhì)將替換為,然后聯(lián)立方程組求得的值,最后將及公比的值整體代入求出其值.
【解析】選D 。為等比數(shù)列,,聯(lián)立可解得或,或,故.
2.(2012·安徽高考理科·T4)公比為2的等比數(shù)列的各項(xiàng)都是正數(shù),且,則( )
【解題指南】由等比數(shù)列的性質(zhì)得到
2、,再結(jié)合等比數(shù)列中任意兩項(xiàng)的關(guān)系即可解得.
【解析】選..
3.(2012·安徽高考文科·T5)公比為2的等比數(shù)列{} 的各項(xiàng)都是正數(shù),且 =16,則=( )
(A) 1 (B)2 (C) 4 (D)8
【解題指南】由等比數(shù)列的性質(zhì)得到,再結(jié)合等比數(shù)列中任意兩項(xiàng)的關(guān)系即可解得.
【解析】選..
4.(2012·北京高考文科·T6)已知{}為等比數(shù)列,下面結(jié)論中正確的是( )
(A)a1+a3≥2a2 (B)
(C)若a1=a3,則a1=a2 (D)若a3>a1,則a4>a2
3、
【解題指南】利用等比數(shù)列的基本量,均值不等式進(jìn)行計(jì)算.
【解析】選B.
選項(xiàng)
具體分析
結(jié)論
A
不一定都是正數(shù),所以不能使用均值不等式
不正確
B
因?yàn)椋杂删挡坏仁娇傻?
正確
C
由可得。當(dāng)時(shí),;當(dāng)時(shí),。
不正確
D
因?yàn)椋援?dāng)時(shí),;當(dāng)時(shí),。
不正確
5.(2012·湖北高考理科·T7)與(2012·湖北高考理科·T7)相同
定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱(chēng)f(x)為“保等比數(shù)列函數(shù)”。現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=x2;②f
4、(x)=2x;③;④f(x)=ln|x |。
則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為( )
A.①② B.③④ C.①③ D.②④
【解題指南】本題考查等比數(shù)列的性質(zhì),解答本題的關(guān)鍵是利用等比數(shù)列的定義解答.
【解析】選C. ,則對(duì)于A(yíng): ,可知A符合題意;對(duì)于B結(jié)果不能保證是定值;對(duì)于C,可知也符合題意.此時(shí)可知結(jié)果.
二、填空題
6.(2012·廣東高考文科·T12)若等比數(shù)列{an}滿(mǎn)足則 .
【解題指南】本題考查了等比數(shù)列的性質(zhì):已知若則.
【解析】,.
【答案】.
7. (2012·浙江高考理科·
5、T13)設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和為Sn。若S2=3a2+2,S4=3a4+2,則q=______________.
【解題指南】?jī)墒阶鞑羁捎汕皀項(xiàng)和間的關(guān)系得出項(xiàng)與項(xiàng)之間的關(guān)系,從而用等比數(shù)列的通項(xiàng)公式求出公比.
【解析】由S2=3a2+2,S4=3a4+2相減可得
,同除以可得
,解得
因?yàn)閝>0,所以.
【答案】.
8.(2012·遼寧高考文科·T14)已知等比數(shù)列{}為遞增數(shù)列.若,且 ,則數(shù)列{}的公比q = _____________________.
【解題指南】利用等比數(shù)列的通項(xiàng)公式,將已知條件用首項(xiàng)和公比表示,解方程即可.
【解析】由
6、于為等比數(shù)列,設(shè)其公比,
由得,解得或;由于等比數(shù)列為遞增數(shù)列且,所以.
【答案】2.
9.(2012·遼寧高考理科·T14)已知等比數(shù)列{}為遞增數(shù)列,且,則數(shù)列{}的通項(xiàng)公式=______________.
【解題指南】利用等比數(shù)列的通項(xiàng)公式,將已知條件用首項(xiàng)和公比表示,解方程即可
【解析】由于為等比數(shù)列,設(shè)其公比,
由得,解得或。
又由,則
由于等比數(shù)列為遞增數(shù)列且,所以,且
故.
【答案】.
10.(2012·新課標(biāo)全國(guó)高考文科·T14)等比數(shù)列{}的前n項(xiàng)和為,若+3=0,則公比q=_______
【解題指南】 將所給等式轉(zhuǎn)化為關(guān)于的方程,消去,解關(guān)于的方程,
7、求出q.
【解析】由可得,即
化簡(jiǎn)整理得,解得.
【答案】-2.
11.(2012·江西高考文科·T13)等比數(shù)列{}的前n項(xiàng)和為,公比不為1.若=1,且對(duì)任意的都有an+2+an+1-2an=0,則S5=______________.
【解題指南】通過(guò)求導(dǎo)得切線(xiàn)斜率,一點(diǎn)一斜率可確定切線(xiàn)方程,最后將方程化為一般式.
【解析】設(shè)公比為,則an+2+an+1-2an=,即,解得(舍去),所以.
【答案】11.
二、解答題
12.(2012·陜西高考文科·T16)已知等比數(shù)列的公比為.
(Ⅰ)若,求數(shù)列的前n項(xiàng)和;
(Ⅱ)證明:對(duì)任意,,,成等差數(shù)列.
【解題指南】(1)求
8、出等比數(shù)列的首項(xiàng)是關(guān)鍵;(2)用首項(xiàng)和公比表示,再根據(jù)等差數(shù)列的定義證明.
【解析】(Ⅰ)∵, ∴,解得,
所以數(shù)列的前n項(xiàng)和.
(Ⅱ)證明:對(duì)任意,,
∴(方法一),
∵,∴,即,
∴,
所以對(duì)任意,,,成等差數(shù)列.
(方法二),,
∵,∴,
,∴,
所以對(duì)任意,,,成等差數(shù)列.
13.(2012·陜西高考理科·T17)(本小題滿(mǎn)分12分)
設(shè)的公比不為1的等比數(shù)列,其前項(xiàng)和為,且成等差數(shù)列.
(Ⅰ)求數(shù)列的公比;
(Ⅱ)證明:對(duì)任意,成等差數(shù)列.
【解題指南】(1)由已知等比數(shù)列中的三項(xiàng)成等差數(shù)列,可以列出關(guān)于和的方程,消去,再解方程可得;(2)列出后,根據(jù)等差數(shù)列的定義進(jìn)行判斷即可.
【解析】(Ⅰ)設(shè)數(shù)列的公比為(),
由成等差數(shù)列,得,即,
由得,解得,(舍去),
所以.
(Ⅱ)(證法一) 對(duì)任意,
,
所以對(duì)任意,成等差數(shù)列
(證法二)對(duì)任意,,
,
∴
,
因此,對(duì)任意,成等差數(shù)列.