6、為=(1+a)12-1.
答案:(1+a)12-1
8.(2014沈陽模擬)一個容器裝有細沙a cm3,細沙從容器底部一個細微的小孔慢慢地勻速漏出,t min后剩余的細沙量為y=ae-bt(cm3),經(jīng)過8 min后發(fā)現(xiàn)容器內(nèi)還有一半的沙子,則再經(jīng)過 min,容器中的沙子只有開始時的八分之一.?
解析:依題意有a·e-b×8=a,
∴b=,
∴y=a·
若容器中的沙子只有開始時的八分之一,
則有a·=a.
解得t=24,
所以再經(jīng)過的時間為24-8=16 min.
答案:16
9.國家規(guī)定個人稿費納稅辦法為:不超過800元的不納稅;超過800元而不超過4000元的按
7、超過800元部分的14%納稅;超過4000元的按全稿酬的11%納稅.某人出版了一書共納稅420元,這個人的稿費為
元.?
解析:420<4000×11%,
所以稿費范圍是(800,4000],
所以(x-800)×14%=420,
解得x=3800.
答案:3800
10.某商家一月份至五月份累計銷售額達3860萬元,預測六月份銷售額為500萬元,七月份銷售額比六月份遞增x%,八月份銷售額比七月份遞增x%,九、十月份銷售總額與七、八月份銷售總額相等.若一月份至十月份銷售總額至少達7000萬元,則x的最小值是 .?
解析:七月份的銷售額為500(1+x%),八月份的
8、銷售額為500(1+x%)2,
則一月份到十月份的銷售總額是
3860+500+2[500(1+x%)+500(1+x%)2],
根據(jù)題意有3860+500+2[500(1+x%)+500(1+x%)2]≥7000,即25(1+x%)+25(1+x%)2≥66,
令t=1+x%,則25t2+25t-66≥0,
解得t≥或t≤-(舍去),
故1+x%≥,
解得x≥20.故x的最小值為20.
答案:20
三、解答題
11.(2014珠海模擬)某校學生社團心理學研究小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其注意力指數(shù)p與聽課時間t之間的關系滿足如圖所示的曲線.當t∈(0,
9、14]時,曲線是二次函數(shù)圖象的一部分,當t∈[14,40]時,曲線是函數(shù)y=loga(t-5)+83(a>0且a≠1)圖象的一部分.根據(jù)專家研究,當注意力指數(shù)p大于等于80時聽課效果最佳.
(1)試求p=f(t)的函數(shù)關系式.
(2)老師在什么時段內(nèi)安排核心內(nèi)容能使得學生聽課效果最佳?請說明理由.
解:(1)t∈(0,14]時,
設p=f(t)=c(t-12)2+82(c<0),將(14,81)代入得c=-,
t∈(0,14]時,p=f(t)=-(t-12)2+82;t∈[14,40]時,將(14,81)代入y=loga(t-5)+83,得a=,
所以p=f(t)=
(2)t
10、∈(0,14]時,由-(t-12)2+82≥80,
解得12-2≤t≤12+2,
所以t∈[12-2,14],
t∈(14,40]時,由lo(t-5)+83≥80,解得5
11、出廠價為40萬元,那么當年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?
解:(1)每噸平均成本為(萬元).
則=+-48≥2-48=32,
當且僅當=,即x=200時取等號.
∴年產(chǎn)量為200噸時,每噸平均成本最低為32萬元.
(2)設年獲得總利潤為R(x)萬元,
則R(x)=40x-y=40x-+48x-8000
=-+88x-8000
=-(x-220)2+1680(0≤x≤210).
∵R(x)在[0,210]上是增函數(shù),
∴x=210時,
R(x)有最大值為-(210-220)2+1680=1660.
∴年產(chǎn)量為210噸時,可獲得最大利潤1660萬元.
12、能力提升
13.某種新藥服用x小時后血液中的殘留量為y毫克,如圖所示為函數(shù)y=f(x)的圖象,當血液中藥物殘留量不小于240毫克時,治療有效.設某人上午8:00第一次服藥,為保證療效,則第二次服藥最遲的時間應為( C )
(A)上午10:00 (B)中午12:00
(C)下午4:00 (D)下午6:00
解析:當x∈[0,4]時,設y=k1x,
把(4,320)代入,得k1=80,
∴y=80x.
當x∈[4,20]時,設y=k2x+b.
把(4,320),(20,0)代入得
解得
∴y=400-20x.
∴y=f(x)=
由y≥240,得或
解得3≤x≤4或4
13、
14、)=(-+52)(-t+)
=t2-+,
此時函數(shù)的對稱軸為x=>100,最大值為s(40)=736.
綜上,這種商品日銷售額s(t)的最大值為808.5.
答案:808.5
15.設某旅游景點每天的固定成本為500元,門票每張為30元,變動成本與購票進入旅游景點的人數(shù)的算術平方根成正比.一天購票人數(shù)為25時,該旅游景點收支平衡;一天購票人數(shù)超過100時,該旅游景點需另交保險費200元.設每天的購票人數(shù)為x,盈利額為y元.
(1)求y與x之間的函數(shù)關系;
(2)該旅游景點希望在人數(shù)達到20人時就不出現(xiàn)虧損,若用提高門票價格的措施,則每張門票至少要多少元(取整數(shù))?(參考數(shù)據(jù): ≈
15、1.41,≈1.73,≈2.24)
解:(1)根據(jù)題意,當購票人數(shù)不多于100時,可設y與x之間的函數(shù)關系為
y=30x-500-k(k為常數(shù),k∈R且k≠0).
∵人數(shù)為25時,該旅游景點收支平衡,
∴30×25-500-k=0,解得k=50.
∴y=
(2)設每張門票價格提高為m元,根據(jù)題意,得m×20-50-500≥0,
∴m≥25+5≈36.2,故每張門票最少要37元.
探究創(chuàng)新
16.某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的
16、部分每噸6元.
(1)寫出每戶每月用水量x(噸)與支付費用y(元)的函數(shù)關系;
(2)該地一家庭記錄了去年12個月的月用水量(x∈N*)如表:
月用水量x(噸)
3
4
5
6
7
頻數(shù)
1
3
3
3
2
請你計算該家庭去年支付水費的月平均費用(精確到1元);
(3)今年干旱形勢仍然嚴峻,該地政府號召市民節(jié)約用水,如果每個月水費不超過12元的家庭稱為“節(jié)約用水家庭”,隨機抽取了該地100戶的月用水量作出如下統(tǒng)計表:
月用水量x(噸)
1
2
3
4
5
6
7
頻數(shù)
10
20
16
16
15
13
10
據(jù)此估計該地“節(jié)約用水家庭”的比例.
解:(1)y關于x的函數(shù)關系式為
y=
(2)由(1)知:當x=3時,y=6;
當x=4時,y=8;當x=5時,y=12;
當x=6時,y=16;當x=7時,y=22.
所以該家庭去年支付水費的月平均費用為
(6×1+8×3+12×3+16×3+22×2)≈13(元).
(3)由(1)和題意知:當y≤12時,x≤5,
所以“節(jié)約用水家庭”的頻率為=77%,據(jù)此估計該地“節(jié)約用水家庭”的比例為77%.
10