應(yīng)用回歸分析(第三版)何曉群 劉文卿 課后習(xí)題答案 完整版.doc
《應(yīng)用回歸分析(第三版)何曉群 劉文卿 課后習(xí)題答案 完整版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《應(yīng)用回歸分析(第三版)何曉群 劉文卿 課后習(xí)題答案 完整版.doc(120頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第二章 一元線性回歸分析 思考與練習(xí)參考答案 2.1 一元線性回歸有哪些基本假定? 答: 假設(shè)1、解釋變量X是確定性變量,Y是隨機(jī)變量; 假設(shè)2、隨機(jī)誤差項(xiàng)ε具有零均值、同方差和不序列相關(guān)性: E(εi)=0 i=1,2, …,n Var (εi)=s2 i=1,2, …,n Cov(εi, εj)=0 i≠j i,j= 1,2, …,n 假設(shè)3、隨機(jī)誤差項(xiàng)ε與解釋變量X之間不相關(guān): Cov(Xi, εi)=0 i=1,2, …,n 假設(shè)4、ε服從零均值、同方差、零協(xié)方差的正態(tài)分布 εi~N(0, s2 ) i=1,2, …,n 2.2 考慮過原點(diǎn)的線性回歸模型 Yi=β1Xi+εi i=1,2, …,n 誤差εi(i=1,2, …,n)仍滿足基本假定。求β1的最小二乘估計(jì) 解: 得: 2.3 證明(2.27式),Sei =0 ,SeiXi=0 。 證明: 其中: 即: Sei =0 ,SeiXi=0 2.4回歸方程E(Y)=β0+β1X的參數(shù)β0,β1的最小二乘估計(jì)與最大似然估計(jì)在什么條件下等價(jià)?給出證明。 答:由于εi~N(0, s2 ) i=1,2, …,n 所以Yi=β0 + β1Xi + εi~N(β0+β1Xi , s2 ) 最大似然函數(shù): 使得Ln(L)最大的,就是β0,β1的最大似然估計(jì)值。 同時(shí)發(fā)現(xiàn)使得Ln(L)最大就是使得下式最小, 上式恰好就是最小二乘估計(jì)的目標(biāo)函數(shù)相同。值得注意的是:最大似然估計(jì)是在εi~N(0, s2 )的假設(shè)下求得,最小二乘估計(jì)則不要求分布假設(shè)。 所以在εi~N(0, s2 ) 的條件下, 參數(shù)β0,β1的最小二乘估計(jì)與最大似然估計(jì)等價(jià)。 2.5 證明是β0的無偏估計(jì)。 證明: 2.6 證明 證明: 2.7 證明平方和分解公式:SST=SSE+SSR 證明: 2.8 驗(yàn)證三種檢驗(yàn)的關(guān)系,即驗(yàn)證: (1);(2) 證明:(1) (2) 2.9 驗(yàn)證(2.63)式: 證明: 其中: 2.10 用第9題證明是s2的無偏估計(jì)量 證明: 2.11 驗(yàn)證決定系數(shù)與F值之間的關(guān)系式 證明: 2.14 為了調(diào)查某廣告對銷售收入的影響,某商店記錄了5個(gè)月的銷售收入y(萬元)和廣告費(fèi)用x(萬元),數(shù)據(jù)見表2.6,要求用手工計(jì)算: 表2.6 月份 1 2 3 4 5 X 1 2 3 4 5 Y 10 10 20 20 40 (1) 畫散點(diǎn)圖(略) (2) X與Y是否大致呈線性關(guān)系? 答:從散點(diǎn)圖看,X與Y大致呈線性關(guān)系。 (3) 用最小二乘法估計(jì)求出回歸方程。 計(jì)算表 X Y 1 10 4 100 20 6 (-14)2 (-4)2 2 10 1 100 10 13 (-7)2 (3)2 3 20 0 0 0 20 0 0 4 20 1 0 0 27 72 72 5 40 4 400 40 34 142 (-6)2 和15 100 和Lxx=10 Lyy=600 和Lxy=70 和100 SSR=490 SSE=110 均3 均20 均20 回歸方程為: (4) 求回歸標(biāo)準(zhǔn)誤差 先求SSR(Qe)見計(jì)算表。 所以 (5) 給出 的置信度為95%的區(qū)間估計(jì); 由于(1-a)的置信度下, 的置信區(qū)間是 查表可得 所以 的95%的區(qū)間估計(jì)為:(7—3.182*1.915,7+3.182*1.915),即(0.906,13.094)。 所以 的95%的區(qū)間估計(jì)為:(-1-3.182*6.351,-1+3.182*6.351), 即(-21.211, 19.211)。的置信區(qū)間包含0,表示不顯著。 (6) 計(jì)算x和y的決定系數(shù) 說明回歸方程的擬合優(yōu)度高。 (7) 對回歸方程作方差分析 方差分析表 方差來源 平方和 自由度 均方 F值 SSR 490 1 490 13.364 SSE 110 3 36.667 SST 600 4 F值=13.364>F0.05(1,3)=10.13(當(dāng)n=1,n=8時(shí),α=0.05查表得對應(yīng)的值為10.13),所以拒絕原假設(shè),說明回歸方程顯著。 (8)做回歸系數(shù)β1的顯著性檢驗(yàn)H0: β1=0 t值=3.656>t0.05/2(3)=3.182,所以拒絕原假設(shè),說明x對Y有顯著的影響。 (8) 做相關(guān)系數(shù)R的顯著性檢驗(yàn) R值=0.904>R0.05(3)=0.878,所以接受原假設(shè),說明x和Y有顯著的線性關(guān)系。 (9) 對回歸方程作殘差圖并作相應(yīng)的分析 殘差圖(略) .從殘差圖上看出,殘差是圍繞e=0在一個(gè)固定的帶子里隨機(jī)波動(dòng),基本滿足模型的假設(shè)ei~N(0, s2 ), 但由于樣本量太少, 所以誤差較大. (10) 求廣告費(fèi)用為4.2萬元時(shí),銷售收入將達(dá)到多少?并給出置信度為95%的置信區(qū)間. 解: 當(dāng)X0=4.2時(shí), 所以廣告費(fèi)用為4.2萬元時(shí), 銷售收入將達(dá)到28.4萬元. 由于置信度為1-α?xí)r,Y0估計(jì)值的置信區(qū)間為: 所以求得Y0的95%的置信區(qū)間為: [6.05932 ,50.74068] 預(yù)測誤差較大. 2.15 一家保險(xiǎn)公司十分關(guān)心其總公司營業(yè)部加班的制度,決定認(rèn)真調(diào)查一下現(xiàn)狀。經(jīng)過十周時(shí)間,收集了每周加班工作時(shí)間的數(shù)據(jù)和簽發(fā)的新保單數(shù)目,x為每周新簽發(fā)的保單數(shù)目,y為每周加班工作時(shí)間(小時(shí))。見表2.7。 表2..7 周序號(hào) 1 2 3 4 5 6 7 8 9 10 X 825 215 1070 550 480 920 1350 325 670 1215 Y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 1、畫散點(diǎn)圖 2、由散點(diǎn)圖可以看出, x與y之間大致呈線性關(guān)系。 3、用最小二乘法求出回歸系數(shù) 由表可知: 回歸方程為: 4、求回歸標(biāo)準(zhǔn)誤差 由方差分析表可以得到:SSE=1.843 故回歸標(biāo)準(zhǔn)誤差,=0.48。 5、給出回歸系數(shù)的置信度為95%的區(qū)間估計(jì) 由回歸系數(shù)顯著性檢驗(yàn)表可以看出,當(dāng)置信度為95%時(shí): 的預(yù)測區(qū)間為[-0.701,0.937], 的預(yù)測區(qū)間為[0.003,0.005]. 的置信區(qū)間包含0,表示不拒絕為零的假設(shè)。 6、決定系數(shù) 由模型概要表得到?jīng)Q定系數(shù)為0.9接近于1,說明模型的擬合優(yōu)度高。 7. 對回歸方程作方差分析 由方差分析表可知: F值=72.396>5.32(當(dāng)n=1,n=8時(shí),查表得對應(yīng)的值為5.32) P值0,所以拒絕原假設(shè),說明回歸方程顯著。 8、對的顯著性檢驗(yàn) 從上面回歸系數(shù)顯著性檢驗(yàn)表可以得到的t統(tǒng)計(jì)量為t=8.509,所對應(yīng)的p值近似為0,通過t檢驗(yàn)。說明每周簽發(fā)的新保單數(shù)目x對每周加班工作時(shí)間y有顯著的影響。 9.做相關(guān)系數(shù)顯著性檢驗(yàn) 相關(guān)系數(shù)達(dá)到0.949,說明x與y顯著線性相關(guān)。 10、對回歸方程作殘差圖并作相應(yīng)分析 從殘差圖上看出,殘差是圍繞e=0隨即波動(dòng),滿足模型的基本假設(shè)。 11、該公司預(yù)計(jì)下一周簽發(fā)新保單X0=1000張,需要的加班時(shí)間是多少? 當(dāng)x=1000張時(shí),小時(shí) 12、給出Y0的置信水平為95%的預(yù)測區(qū)間 通過SPSS運(yùn)算得到Y(jié)0的置信水平為95%的預(yù)測區(qū)間為: (2.5195,4.8870)。 13 給出E(Y0)的置信水平為95%的預(yù)測區(qū)間 通過SPSS運(yùn)算得到Y(jié)0的置信水平為95%的預(yù)測區(qū)間為:(3.284,4.123)。 2.16 表是1985年美國50個(gè)州和哥倫比亞特區(qū)公立學(xué)校中教師的人均年工資y(美元)和學(xué)生的人均經(jīng)費(fèi)投入x(美元). 序號(hào) y x 序號(hào) y x 序號(hào) y x 1 19583 3346 18 20816 3059 35 19538 2642 2 20263 3114 19 18095 2967 36 20460 3124 3 20325 3554 20 20939 3285 37 21419 2752 4 26800 4542 21 22644 3914 38 25160 3429 5 29470 4669 22 24624 4517 39 22482 3947 6 26610 4888 23 27186 4349 40 20969 2509 7 30678 5710 24 33990 5020 41 27224 5440 8 27170 5536 25 23382 3594 42 25892 4042 9 25853 4168 26 20627 2821 43 22644 3402 10 24500 3547 27 22795 3366 44 24640 2829 11 24274 3159 28 21570 2920 45 22341 2297 12 27170 3621 29 22080 2980 46 25610 2932 13 30168 3782 30 22250 3731 47 26015 3705 14 26525 4247 31 20940 2853 48 25788 4123 15 27360 3982 32 21800 2533 49 29132 3608 16 21690 3568 33 22934 2729 50 41480 8349 17 21974 3155 34 18443 2305 51 25845 3766 解答:(1)繪制y對x的散點(diǎn)圖,可以用直線回歸描述兩者之間的關(guān)系嗎? 由上圖可以看出y與x的散點(diǎn)分布大致呈直線趨勢。 (2)建立y對x的線性回歸。 利用SPSS進(jìn)行y和x的線性回歸,輸出結(jié)果如下: 表1 模型概要 R R2 調(diào)整后的R2 隨機(jī)誤差項(xiàng)的標(biāo)準(zhǔn)差估計(jì)值 0.835 0.697 0.691 2323.25589 表2 方差分析表 模型 平方和 自由度 和平均 F值 P值 1 回歸平方和 6.089E8 1 6.089E8 112.811 .000a 殘差平方和 2.645E8 49 5397517.938 總平方和 8.734E8 50 表3 系數(shù)表 模型 非標(biāo)準(zhǔn)化系數(shù) 標(biāo)準(zhǔn)化系數(shù) t值 P值 B 標(biāo)準(zhǔn)差 回歸系數(shù) 1 常數(shù) 12112.629 1197.768 10.113 .000 對學(xué)生的人均經(jīng)費(fèi)投入 3.314 .312 .835 10.621 .000 1) 由表1可知,x與y決定系數(shù)為,說明模型的擬合效果一般。x與y線性相關(guān)系數(shù)R=0.835,說明x與y有較顯著的線性關(guān)系。 2) 由表2(方差分析表中)看到,F(xiàn)=112.811,顯著性Sig.p,說明回歸方程顯著。 3) 由表3 可見對的顯著性t檢驗(yàn)P值近似為零,故顯著不為0,說明x對y有顯著的線性影響。 4) 綜上,模型通過檢驗(yàn),可以用于預(yù)測和控制。 x與y的線性回歸方程為: (3)繪制標(biāo)準(zhǔn)殘差的直方圖和正態(tài)概率圖 圖1 標(biāo)準(zhǔn)殘差的直方圖 理論正 態(tài)概率 觀測值概率 圖2 標(biāo)準(zhǔn)殘差的正態(tài)概率P-P圖 由圖1可見標(biāo)準(zhǔn)化后殘差近似服從正態(tài)分布,由圖2可見正態(tài)概率圖中的各個(gè)散點(diǎn)都分布在45°線附近,所以沒有證據(jù)證明誤差項(xiàng)服從同方差的正態(tài)分布的假定是不真實(shí)的,即殘差通過正態(tài)性檢驗(yàn),滿足模型基本假設(shè)。 第3章 多元線性回歸 思考與練習(xí)參考答案 3.2 討論樣本容量n與自變量個(gè)數(shù)p的關(guān)系,它們對模型的參數(shù)估計(jì)有何影響? 答:在多元線性回歸模型中,樣本容量n與自變量個(gè)數(shù)p的關(guān)系是:n>>p。如果n<=p對模型的參數(shù)估計(jì)會(huì)帶來很嚴(yán)重的影響。因?yàn)椋? 1. 在多元線性回歸模型中,有p+1個(gè)待估參數(shù)β,所以樣本容量的個(gè)數(shù)應(yīng)該大于解釋變量的個(gè)數(shù),否則參數(shù)無法估計(jì)。 2. 解釋變量X是確定性變量,要求,表明設(shè)計(jì)矩陣X中的自變量列之間不相關(guān),即矩陣X是一個(gè)滿秩矩陣。若,則解釋變量之間線性相關(guān),是奇異陣,則的估計(jì)不穩(wěn)定。 3.3證明 隨機(jī)誤差項(xiàng)ε的方差s2的無偏估計(jì)。 證明: 3.4 一個(gè)回歸方程的復(fù)相關(guān)系數(shù)R=0.99,樣本決定系數(shù)R2=0.9801,我們能判斷這個(gè)回歸方程就很理想嗎? 答:不能斷定這個(gè)回歸方程理想。因?yàn)椋? 1. 在樣本容量較少,變量個(gè)數(shù)較大時(shí),決定系數(shù)的值容易接近1,而此時(shí)可能F檢驗(yàn)或者關(guān)于回歸系數(shù)的t檢驗(yàn),所建立的回歸方程都沒能通過。 2. 樣本決定系數(shù)和復(fù)相關(guān)系數(shù)接近于1只能說明Y與自變量X1,X2,…,Xp整體上的線性關(guān)系成立,而不能判斷回歸方程和每個(gè)自變量是顯著的,還需進(jìn)行F檢驗(yàn)和t檢驗(yàn)。 3. 在應(yīng)用過程中發(fā)現(xiàn),在樣本容量一定的情況下,如果在模型中增加解釋變量必定使得自由度減少,使得 R2往往增大,因此增加解釋變量(尤其是不顯著的解釋變量)個(gè)數(shù)引起的R2的增大與擬合好壞無關(guān)。 3.7 驗(yàn)證 證明:多元線性回歸方程模型的一般形式為: 其經(jīng)驗(yàn)回歸方程式為, 又, 故, 中心化后,則有, 左右同時(shí)除以, 令, 樣本數(shù)據(jù)標(biāo)準(zhǔn)化的公式為 , 則上式可以記為 則有 3.10 驗(yàn)證決定系數(shù)R2與F值之間的關(guān)系式: 證明: 3.11 研究貨運(yùn)總量y(萬噸)與工業(yè)總產(chǎn)值x1(億元)、農(nóng)業(yè)總產(chǎn)值x2(億元)、居民非商品支出x3(億元)的關(guān)系。數(shù)據(jù)見表3.9(略)。 (1)計(jì)算出y,x1,x2,x3的相關(guān)系數(shù)矩陣。 SPSS輸出如下: 則相關(guān)系數(shù)矩陣為: (2)求出y與x1,x2,x3的三元回歸方程。 對數(shù)據(jù)利用SPSS做線性回歸,得到回歸方程為 (3)對所求的方程作擬合優(yōu)度檢驗(yàn)。 由上表可知,調(diào)整后的決定系數(shù)為0.708,說明回歸方程對樣本觀測值的擬合程度較好。 (4)對回歸方程作顯著性檢驗(yàn); 原假設(shè): F統(tǒng)計(jì)量服從自由度為(3,6)的F分布,給定顯著性水平=0.05,查表得,由方查分析表得,F(xiàn)值=8.283>4.76,p值=0.015,拒絕原假設(shè),由方差分析表可以得到,說明在置信水平為95%下,回歸方程顯著。 (5)對每一個(gè)回歸系數(shù)作顯著性檢驗(yàn); 做t檢驗(yàn):設(shè)原假設(shè)為, 統(tǒng)計(jì)量服從自由度為n-p-1=6的t分布,給定顯著性水平0.05,查得單側(cè)檢驗(yàn)臨界值為1.943,X1的t值=1.942<1.943,處在否定域邊緣。 X2的t值=2.465>1.943。拒絕原假設(shè)。 由上表可得,在顯著性水平時(shí),只有的P值<0.05,通過檢驗(yàn),即只有的回歸系數(shù)較為顯著 ;其余自變量的P值均大于0.05,即x1,x2的系數(shù)均不顯著。 (6)如果有的回歸系數(shù)沒有通過顯著性檢驗(yàn),將其剔除,重新建立回歸方程,并作回歸方程的顯著性檢驗(yàn)和回歸系數(shù)的顯著性檢驗(yàn)。 解:用后退法對數(shù)據(jù)重新做回歸分析,結(jié)果如下: 選擇模型二,重新建立的回歸方程為: 對新的回歸方程做顯著性檢驗(yàn): 原假設(shè): F服從自由度為(2,7)的F分布,給定顯著性水平=0.05,查表得,由方差分析表得,F(xiàn)值=11.117>4.74,p值=0.007,拒絕原假設(shè). 認(rèn)為在顯著性水平=0.05下,x1,x2整體上對y有顯著的線性影響,即回歸方程是顯著的。 對每一個(gè)回歸系數(shù)做顯著性檢驗(yàn): 做t檢驗(yàn):設(shè)原假設(shè)為,統(tǒng)計(jì)量服從自由度為n-p-1=7的t分布,給定顯著性水平0.05,查得單側(cè)檢驗(yàn)臨界值為1.895,X1的t值=2.575>1.895,拒絕原假設(shè)。故顯著不為零,自變量X1對因變量y的線性效果顯著; 同理β2也通過檢驗(yàn)。同時(shí)從回歸系數(shù)顯著性檢驗(yàn)表可知:X1,X2的p值 都小于0.05,可認(rèn)為對x1,x2分別對y都有顯著的影響。 (7)求出每一個(gè)回歸系數(shù)的置信水平為955D 置信區(qū)間 由回歸系數(shù)表可以看到,β1置信水平為95%的置信區(qū)間[0.381,8.970], β2置信水平為95%的置信區(qū)間[3.134,14.808] (8)求標(biāo)準(zhǔn)化回歸方程 由回歸系數(shù)表(上表)可得,標(biāo)準(zhǔn)化后的回歸方程為: (9)求當(dāng)x01=75,x02=42,x03=3.1時(shí)的y的預(yù)測值,給定置信水平95%,用SPSS軟件計(jì)算精確置信區(qū)間,用手工計(jì)算近似預(yù)測區(qū)間; 由SPSS輸出結(jié)果可知,當(dāng)時(shí),(見上表),的置信度為95%的精確預(yù)測區(qū)間為(204.4,331.2)(見下表),的置信度為95%的近似預(yù)測區(qū)間為,手工計(jì)算得:(219.6,316.0)。 (10)結(jié)合回歸方程對問題做一些簡單分析。 答:由回歸方程 可知農(nóng)業(yè)總產(chǎn)值固定的時(shí)候,工業(yè)總產(chǎn)值每增加1億元,貨運(yùn)總量增加4.676萬噸;工業(yè)總產(chǎn)值固定的時(shí)候,農(nóng)業(yè)總產(chǎn)值每增加1億元,貨運(yùn)總量增加8.971萬噸。而居民非商品支出對貨運(yùn)總量沒有顯著的線性影響。由標(biāo)準(zhǔn)化回歸方程可知: 工業(yè)總產(chǎn)值、農(nóng)業(yè)總產(chǎn)值與Y都是正相關(guān)關(guān)系,比較回歸系數(shù)的大小可知農(nóng)業(yè)總產(chǎn)值X2對貨運(yùn)總量Y的影響程度大一些。 第4章 違背基本假設(shè)的情況 思考與練習(xí)參考答案 4.1 試舉例說明產(chǎn)生異方差的原因。 答:例4.1:截面資料下研究居民家庭的儲(chǔ)蓄行為 Yi=b0+b1Xi+εi 其中:Yi表示第i個(gè)家庭的儲(chǔ)蓄額,Xi表示第i個(gè)家庭的可支配收入。 由于高收入家庭儲(chǔ)蓄額的差異較大,低收入家庭的儲(chǔ)蓄額則更有規(guī)律性,差異較小,所以εi的方差呈現(xiàn)單調(diào)遞增型變化。 例4.2:以某一行業(yè)的企業(yè)為樣本建立企業(yè)生產(chǎn)函數(shù)模型 Yi=Aib1 Kib2 Lib3eεi 被解釋變量:產(chǎn)出量Y,解釋變量:資本K、勞動(dòng)L、技術(shù)A,那么每個(gè)企業(yè)所處的外部環(huán)境對產(chǎn)出量的影響被包含在隨機(jī)誤差項(xiàng)中。由于每個(gè)企業(yè)所處的外部環(huán)境對產(chǎn)出量的影響程度不同,造成了隨機(jī)誤差項(xiàng)的異方差性。這時(shí),隨機(jī)誤差項(xiàng)ε的方差并不隨某一個(gè)解釋變量觀測值的變化而呈規(guī)律性變化,呈現(xiàn)復(fù)雜型。 4.2 異方差帶來的后果有哪些? 答:回歸模型一旦出現(xiàn)異方差性,如果仍采用OLS估計(jì)模型參數(shù),會(huì)產(chǎn)生下列不良后果: 1、參數(shù)估計(jì)量非有效 2、變量的顯著性檢驗(yàn)失去意義 3、回歸方程的應(yīng)用效果極不理想 總的來說,當(dāng)模型出現(xiàn)異方差性時(shí),參數(shù)OLS估計(jì)值的變異程度增大,從而造成對Y的預(yù)測誤差變大,降低預(yù)測精度,預(yù)測功能失效。 4.3 簡述用加權(quán)最小二乘法消除一元線性回歸中異方差性的思想與方法。 答:普通最小二乘估計(jì)就是尋找參數(shù)的估計(jì)值使離差平方和達(dá)極小。其中每個(gè)平方項(xiàng)的權(quán)數(shù)相同,是普通最小二乘回歸參數(shù)估計(jì)方法。在誤差項(xiàng)等方差不相關(guān)的條件下,普通最小二乘估計(jì)是回歸參數(shù)的最小方差線性無偏估計(jì)。然而在異方差的條件下,平方和中的每一項(xiàng)的地位是不相同的,誤差項(xiàng)的方差大的項(xiàng),在殘差平方和中的取值就偏大,作用就大,因而普通最小二乘估計(jì)的回歸線就被拉向方差大的項(xiàng),方差大的項(xiàng)的擬合程度就好,而方差小的項(xiàng)的擬合程度就差。由OLS求出的仍然是的無偏估計(jì),但不再是最小方差線性無偏估計(jì)。所以就是:對較大的殘差平方賦予較小的權(quán)數(shù),對較小的殘差平方賦予較大的權(quán)數(shù)。這樣對殘差所提供信息的重要程度作一番校正,以提高參數(shù)估計(jì)的精度。 加權(quán)最小二乘法的方法: 4.4簡述用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與方法。 答:運(yùn)用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與一元線性回歸的類似。多元線性回歸加權(quán)最小二乘法是在平方和中加入一個(gè)適當(dāng)?shù)臋?quán)數(shù) ,以調(diào)整各項(xiàng)在平方和中的作用,加權(quán)最小二乘的離差平方和為: (2) 加權(quán)最小二乘估計(jì)就是尋找參數(shù)的估計(jì)值使式(2)的離差平方和達(dá)極小。所得加權(quán)最小二乘經(jīng)驗(yàn)回歸方程記做 (3) 多元回歸模型加權(quán)最小二乘法的方法: 首先找到權(quán)數(shù),理論上最優(yōu)的權(quán)數(shù)為誤差項(xiàng)方差的倒數(shù),即 (4) 誤差項(xiàng)方差大的項(xiàng)接受小的權(quán)數(shù),以降低其在式(2)平方和中的作用; 誤差項(xiàng)方差小的項(xiàng)接受大的權(quán)數(shù),以提高其在平方和中的作用。由(2)式求出的加權(quán)最小二乘估計(jì)就是參數(shù)的最小方差線性無偏估計(jì)。 一個(gè)需要解決的問題是誤差項(xiàng)的方差是未知的,因此無法真正按照式(4)選取權(quán)數(shù)。在實(shí)際問題中誤差項(xiàng)方差通常與自變量的水平有關(guān)(如誤差項(xiàng)方差隨著自變量的增大而增大),可以利用這種關(guān)系確定權(quán)數(shù)。例如與第j個(gè)自變量取值的平方成比例時(shí), 即=k時(shí),這時(shí)取權(quán)數(shù)為 (5) 更一般的情況是誤差項(xiàng)方差與某個(gè)自變量(與|ei|的等級(jí)相關(guān)系數(shù)最大的自變量)取值的冪函數(shù)成比例,即=k,其中m是待定的未知參數(shù)。此時(shí)權(quán)數(shù)為 (6) 這時(shí)確定權(quán)數(shù) 的問題轉(zhuǎn)化為確定冪參數(shù)m的問題,可以借助SPSS軟件解決。4.5(4.5)式一元加權(quán)最小二乘回歸系數(shù)估計(jì)公式。 證明: 由 得: 4.6驗(yàn)證(4.8)式多元加權(quán)最小二乘回歸系數(shù)估計(jì)公式。 證明:對于多元線性回歸模型 (1) ,即存在異方差。設(shè) , 用左乘(1)式兩邊,得到一個(gè)新的的模型: ,即。 因?yàn)椋? 故新的模型具有同方差性,故可以用廣義最小二乘法估計(jì)該模型,得 原式得證。 4.7 有同學(xué)認(rèn)為當(dāng)數(shù)據(jù)存在異方差時(shí),加權(quán)最小二乘回歸方程與普通最小二乘回歸方程之間必然有很大的差異,異方差越嚴(yán)重,兩者之間的差異就越大。你是否同意這位同學(xué)的觀點(diǎn)?說明原因。 答:不同意。當(dāng)回歸模型存在異方差時(shí),加權(quán)最小二乘估計(jì)(WLS)只是普通最小二乘估計(jì)(OLS)的改進(jìn),這種改進(jìn)可能是細(xì)微的,不能理解為WLS一定會(huì)得到與OLS截然不同的方程來,或者大幅度的改進(jìn)。實(shí)際上可以構(gòu)造這樣的數(shù)據(jù),回歸模型存在很強(qiáng)的異方差,但WLS 與OLS的結(jié)果一樣。加權(quán)最小二乘法不會(huì)消除異方差,只是消除異方差的不良影響,從而對模型進(jìn)行一點(diǎn)改進(jìn)。 4.8 對例4.3的數(shù)據(jù),用公式計(jì)算出加權(quán)變換殘差,繪制加權(quán)變換殘差圖,根據(jù)繪制出的圖形說明加權(quán)最小二乘估計(jì)的效果。 解:用公式計(jì)算出加權(quán)變換殘差,分別繪制加權(quán)最小二乘估計(jì)后的殘差圖和加權(quán)變換殘差圖(見下圖)。 根據(jù)繪制出的兩個(gè)圖形可以發(fā)現(xiàn)加權(quán)最小二乘估計(jì)沒有消除異方差,只是對原OLS的殘差有所改善,而經(jīng)過加權(quán)變換后的殘差不存在異方差。 4.9 參見參考文獻(xiàn)[2],表4.12(P138)是用電高峰每小時(shí)用電量y與每月總用電量x的數(shù)據(jù)。 (1)用普通最小二乘法建立y與x的回歸方程,并畫出殘差散點(diǎn)圖。 解:SPSS輸出結(jié)果如下: 由上表可得回歸方程為: 殘差圖為: (2)診斷該問題是否存在異方差; 解:a由殘差散點(diǎn)圖可以明顯看出存在異方差,誤差的方差隨著的增加而增大。 b用SPSS做等級(jí)相關(guān)系數(shù)的檢驗(yàn),結(jié)果如下表所示: 得到等級(jí)相關(guān)系數(shù),P值=0.021,認(rèn)為殘差絕對值與自變量顯著相關(guān),存在異方差。 (3)如果存在異方差,用冪指數(shù)型的權(quán)函數(shù)建立加權(quán)最小二乘回歸方程; 解:SPSS輸出結(jié)果如圖: Coefficients a,b -.683 .298 -2.296 .026 .004 .000 .812 9.930 .000 (Constant) x Model 1 B Std. Error Unstandardized Coefficients Beta Standardized Coefficients t Sig. Dependent Variable: y a. Weighted Least Squares Regression - Weighted by Weight for y from WLS, MOD_2 x** -1.500 b. 由上述表可得,在時(shí)對數(shù)似然函數(shù)達(dá)到最大,則冪指數(shù)的最優(yōu)取值為。加權(quán)后的回歸方程為:。 計(jì)算加權(quán)后的殘差,并對殘差絕對值和自變量做等級(jí)相關(guān)系數(shù)分析,結(jié)果如下表所示: ,P值為0.019<0.05,即加權(quán)最小二乘法沒有消除異方差,只是消除異方差的不良影響,從而對模型進(jìn)行一點(diǎn)改進(jìn)。 Correlations 1.000 .321 * . .019 53 53 .321 * 1.000 .019 . 53 53 Correlation Coefficient Sig. (2-tailed) N Correlation Coefficient Sig. (2-tailed) N x abseiw Spearman's rho x abseiw Correlation is significant at the 0.05 level (2-tailed). *. (4)用方差穩(wěn)定變換消除異方差。 解:對應(yīng)變量做方差穩(wěn)定變換()后,用最小二乘法做回歸,SPSS結(jié)果如下表: Coefficients a .582 .130 4.481 .000 .001 .000 .805 9.699 .000 (Constant) x Model 1 B Std. Error Unstandardized Coefficients Beta Standardized Coefficients t Sig. Dependent Variable: sqrty a. 則回歸方程為:。 保存預(yù)測值,計(jì)算出殘差的絕對值后,計(jì)算等級(jí)相關(guān)系數(shù),見下表: 其中,P值=0.254>0.05,說明異方差已經(jīng)消除。 4.10 試舉一可能產(chǎn)生隨機(jī)誤差項(xiàng)序列相關(guān)的經(jīng)濟(jì)例子。 答:例如,居民總消費(fèi)函數(shù)模型: Ct=b0+b1Yt+ ε t t=1,2,…,n 由于居民收入對消費(fèi)影響有滯后性,而且今年消費(fèi)水平受上年消費(fèi)水平影響,則可能出現(xiàn)序列相關(guān)性。另外由于消費(fèi)習(xí)慣的影響被包含在隨機(jī)誤差項(xiàng)中,則可能出現(xiàn)序列相關(guān)性(往往是正相關(guān) )。 4.11 序列相關(guān)性帶來的嚴(yán)重后果是什么? 答:直接用普通最小二乘法估計(jì)隨機(jī)誤差項(xiàng)存在序列相關(guān)性的線性回歸模型未知參數(shù)時(shí),會(huì)產(chǎn)生下列一些問題: 1. 參數(shù)估計(jì)量仍然是無偏的,但不具有有效性,因?yàn)橛凶韵嚓P(guān)性時(shí)參數(shù)估計(jì)值的方差大于無自相關(guān)性時(shí)的方差。 2. 均方誤差MSE可能嚴(yán)重低估誤差項(xiàng)的方差 3. 變量的顯著性檢驗(yàn)失去意義:在變量的顯著性檢驗(yàn)中,統(tǒng)計(jì)量是建立在參數(shù)方差正確估計(jì)基礎(chǔ)之上的,當(dāng)參數(shù)方差嚴(yán)重低估時(shí),容易導(dǎo)致t值和F值偏大,即可能導(dǎo)致得出回歸參數(shù)統(tǒng)計(jì)檢驗(yàn)和回歸方程檢驗(yàn)顯著,但實(shí)際并不顯著的嚴(yán)重錯(cuò)誤結(jié)論。 4. 當(dāng)存在序列相關(guān)時(shí), 仍然是的無偏估計(jì),但在任一特定的樣本中, 可能嚴(yán)重歪曲b的真實(shí)情況,即最小二乘法對抽樣波動(dòng)變得非常敏感 5. 模型的預(yù)測和結(jié)構(gòu)分析失效。 4.12 總結(jié)DW檢驗(yàn)的優(yōu)缺點(diǎn)。 答:優(yōu)點(diǎn):1.應(yīng)用廣泛,一般的計(jì)算機(jī)軟件都可以計(jì)算出DW值; 2.適用于小樣本; 3.可用于檢驗(yàn)隨機(jī)擾動(dòng)項(xiàng)具有一階自回歸形式的序列相關(guān)問題。 缺點(diǎn):1. DW檢驗(yàn)有兩個(gè)不能確定的區(qū)域,一旦DW值落入該區(qū)域,就無法判斷。此時(shí),只有增大樣本容量或選取其他方法; 2.DW統(tǒng)計(jì)量的上、下界表要求n>15,這是由于樣本如果再小,利用殘差就很難對自相關(guān)性的存在做出比較正確的診斷; 3.DW檢驗(yàn)不適應(yīng)隨機(jī)項(xiàng)具有高階序列相關(guān)性的檢驗(yàn)。 4.13 表4.13中是某軟件公司月銷售額數(shù)據(jù),其中,x為總公司的月銷售額(萬元);y為某分公司的月銷售額(萬元)。 (1)用普通最小二乘法建立y與x的回歸方程; 由上表可知:用普通二乘法建立的回歸方程為 (2)用殘差圖及DW檢驗(yàn)診斷序列的相關(guān)性; 1.以自變量x為橫軸,普通殘差為縱軸畫殘差圖如下: 從圖中可以看到,殘差有規(guī)律的變化,呈現(xiàn)大致反W形狀,說明隨機(jī)誤差項(xiàng)存在自相關(guān)性。 2.以(殘差1)為橫坐標(biāo),(殘差)為縱坐標(biāo),繪制散點(diǎn)圖如下: 由殘差圖可見大部分的點(diǎn)落在第一、三象限內(nèi),表明隨機(jī)擾動(dòng)項(xiàng)存在著正的序列相關(guān); 3.從下表 可知DW值為0.663,查DW表,n=20,k=2,顯著性水平=0.05,得=1.20,=1.41,由于0.663<1.20,知DW值落入正相關(guān)區(qū)域,即殘差序列存在正的自相關(guān)。 (3)用迭代法處理序列相關(guān),并建立回歸方程。 自相關(guān)系數(shù) 令,,然后用對作普通最小二乘回歸可得輸出結(jié)果如下: 可看到新的回歸方程的DW=1.360.且1.18<1.360<1.40,因而DW檢驗(yàn)落入不確定區(qū)域此時(shí),一步迭代誤差項(xiàng)的標(biāo)準(zhǔn)差為0.07296,小于的標(biāo)準(zhǔn)差0.097 對的回歸方程為=-0.3+0.173,將=-0.6685,=-0.6685代人,還原為原始變量的方程=-0.3+0.6685+0.173-0.1157 由于一步迭代的DW檢驗(yàn)落入不確定區(qū)域,因而可以考慮對數(shù)據(jù)進(jìn)行二步迭代,也就是對和重復(fù)以上迭代過程。進(jìn)行回歸結(jié)果如下: 此時(shí)DW的值為1.696,查DW表,n=18,k=2,顯著性水平=0.05,得=1.16, =1.39, DW值大于,小于2,落入無自相關(guān)區(qū)域。誤差標(biāo)準(zhǔn)項(xiàng)0.0849,略小于一步迭代的標(biāo)準(zhǔn)差0.7296。 但是在檢驗(yàn)都通過的情況下,由于一步迭代的值和F值均大于兩步迭代后的值,且根據(jù)取模型簡約的原則,最終選擇一步迭代的結(jié)果,即: =-0.3+0.6685+0.173-0.1157 (4)用一階差分的方法處理數(shù)據(jù),建立回歸方程; 先計(jì)算差分=-,=-,然后用對做過原點(diǎn)的最小二乘回歸,結(jié)果如下: 由上面表,可知DW值為1.462>1.40=,即DW落入不相關(guān)區(qū)域,可知?dú)埐钚蛄胁淮嬖谧韵嚓P(guān),一階差分法成功地消除了序列自相關(guān)。同時(shí)得到回歸方程為 =0.169, 將=-,=-,代人,還原原始變量的方程 =+0.169(-) (5)比較普通最小二乘法所得的回歸方程和迭代法、一階差分法所建立回歸方程的優(yōu)良性。 答:本題中自相關(guān)系數(shù)0.6685,不接近于1,不適宜用差分法,另外由迭代法的F值及都大于差分法的值,故差分法的效果低于迭代法的效果;而普通最小二乘法的隨機(jī)誤差項(xiàng)標(biāo)準(zhǔn)差為0.09744,大于迭代的隨機(jī)誤差項(xiàng)標(biāo)準(zhǔn)差0.07296,所以迭代的效果要優(yōu)于普通最小二乘法,所以本題中一次迭代法最好。 4.14 某樂隊(duì)經(jīng)理研究其樂隊(duì)CD盤的銷售額(y),兩個(gè)有關(guān)的影響變量是每周出場次x1和樂隊(duì)網(wǎng)站的周點(diǎn)擊率x2,數(shù)據(jù)見表4.14。 (1)用普通最小二乘法建立y與x1、x2的回歸方程,用殘差圖及DW檢驗(yàn)診斷序列的自相關(guān)性; 解:將數(shù)據(jù)輸入SPSS,經(jīng)過線性回歸得到結(jié)果如下: Model Summary(b) Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 1 .541(a) .293 .264 329.69302 .745 a Predictors: (Constant), x2, x1 b Dependent Variable: y ANOVA(b) Model Sum of Squares df Mean Square F Sig. 1 Regression 2205551.678 2 1102775.839 10.145 .000(a) Residual 5326177.036 49 108697.491 Total 7531728.714 51 a Predictors: (Constant), x2, x1 b Dependent Variable: y 由以上3個(gè)表可知普通最小二乘法建立y與x1、x2的回歸方程,通過了r、F、t檢驗(yàn),說明回歸方程顯著。y與x1、x2的回歸方程為: y=-574.062+191.098x1+2.045x2 殘差圖ei(et)~ei1(et-1)為: 從殘差圖可以看出殘差集中在1、3象限,說明隨機(jī)誤差項(xiàng)存在一階正自相關(guān)。 DW=0.745 查表得dl=1.46 du=1.63, 0- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 應(yīng)用回歸分析第三版何曉群 劉文卿 課后習(xí)題答案 完整版 應(yīng)用 回歸 分析 第三 課后 習(xí)題 答案
鏈接地址:http://www.hcyjhs8.com/p-1572576.html