MATLAB有限元分析與應用.ppt
《MATLAB有限元分析與應用.ppt》由會員分享,可在線閱讀,更多相關《MATLAB有限元分析與應用.ppt(55頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2020/9/7,1,,第三章 MATLAB有限元分析與應用,,,,,,3-1 彈簧元,結(jié)構(gòu)分析編程及軟件應用,3-2 線性桿元,3-3 二次桿元,3-4 平面桁架元,3-5 空間桁架元,3-6 梁元,2020/9/7,2,,3-1 彈簧元,,,結(jié)構(gòu)分析編程及軟件應用,1、有限元方法的步驟:,離散化域,形成單剛矩陣,集成整體剛度矩陣,引入邊界條件,求解方程,后處理,2020/9/7,3,,,,,,,結(jié)構(gòu)分析編程及軟件應用,2、基本方程,3-1 彈簧元,彈簧元是總體和局部坐標一致的一維有限單元,每個彈簧元有兩個節(jié)點(node),,,,,單剛矩陣為:,,總剛矩陣:,,結(jié)構(gòu)方程:,單元節(jié)點力:,
2、,2020/9/7,4,,,,結(jié)構(gòu)分析編程及軟件應用,3、MATLAB函數(shù)編寫,3-1 彈簧元,%SpringElementStiffness This function returns the element stiffness %matrix for a spring with stiffness k. %The size of the element stiffness matrix is 2 x 2.,3.1 單元剛度矩陣的形成,y = k -k ; -k k;,function y = SpringElementStiffness(k),2020/9/7,5,,,,結(jié)構(gòu)分析編程
3、及軟件應用,3、MATLAB函數(shù)編寫,3-1 彈簧元,%SpringAssemble This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % This function returns the global stiffness matrix K % after the element stiffness matrix k is assembled.,,,,3.
4、2 整體剛度矩陣的形成,K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K;,function y = SpringAssemble(K,k,i,j),2020/9/7,6,,,,結(jié)構(gòu)分析編程及軟件應用,3、MATLAB函數(shù)編寫,3-1 彈簧元,%SpringElementForces This function returns the element nodal force % vector given the e
5、lement stiffness matrix k % and the element nodal displacement vector u.,,,,3.3 節(jié)點載荷計算,y = k * u;,function y = SpringElementForces(k,u),2020/9/7,7,,,,結(jié)構(gòu)分析編程及軟件應用,4、實例計算分析應用,3-1 彈簧元,,,,如圖所示二彈簧元結(jié)構(gòu),假定k1=100kN/m,k2=200kN/m,P=15kN。 求:系統(tǒng)的整體剛度矩陣; 節(jié)點2、3的位移; 節(jié)點1的支反力; 每個彈簧的內(nèi)力,解:,步驟1:離散化域,2020/9/7,
6、8,,,,結(jié)構(gòu)分析編程及軟件應用,4、實例計算分析應用,3-1 彈簧元,,,,步驟2:形成單元剛度矩陣,k1=SpringElementStiffness(100);,k1 = 100 -100 -100 100,k2=SpringElementStiffness(200);,k2 = 200 -200 -200 200,調(diào)用 function y = SpringElementStiffness(k)函數(shù),2020/9/7,9,,,,結(jié)構(gòu)分析編程及軟件應用,4、實例計算分析應用,3-1 彈簧元,,,,步驟3:集成整體剛度矩陣,調(diào)用 function y = SpringAssembl
7、e(K,k,i,j)函數(shù),n=3; K = zeros(n,n);,K = SpringAssemble(K,k1,1,2),K = 0 0 0 0 0 0 0 0 0,K = SpringAssemble(K,k2,2,3),K = 100 -100 0 -100 100 0 0 0 0,K = 100 -100 0 -100 300 -200 0 -200 200,2020/9/7,10,,,,結(jié)構(gòu)分析編程及軟件應用,4、實例計算分析應用,3-1 彈簧元,,,,步驟4:引入邊界條件,,已知邊界條件:,,2020/9/7,11,,
8、,,結(jié)構(gòu)分析編程及軟件應用,5、實例計算分析應用,3-1 彈簧元,,,,步驟5:解方程,,U=zeros(2,1); F=0;15; K = K(2:3,2:3); U=KF,U=inv(K)*F,K(1,:)=; K(:,1)=;,,U = 0.1500 0.2250,2020/9/7,12,,,,結(jié)構(gòu)分析編程及軟件應用,5、實例計算分析應用,2-1 彈簧元,,,,步驟6:后處理,,,U=0;U,U = 0 0.1500 0.2250,F=K*U,F = -15.0000 0.0000 15.0000,u1=U(1:2); f1=SpringElementForces(k1
9、,u1);,f1 = -15.0000 15.0000,u2=U(2:3); f2=SpringElementForces(k2,u2);,f2 = -15.0000 15.0000,2020/9/7,13,,,,結(jié)構(gòu)分析編程及軟件應用,5、實例計算分析應用,3-1 彈簧元,,,,,,k1=SpringElementStiffness(100); k2=SpringElementStiffness(200); n=3; K=zeros(n,n); K=SpringAssemble(K,k1,1,2); K=SpringAssemble(K,k2,2,3); U=zeros(2,1); F=0
10、;15; K = K(2:3,2:3); KK=K; U=KF U=0;U; F=K*U; u1=U(1:2); f1=SpringElementForces(k1,u1) u2=U(2:3); f2=SpringElementForces(k2,u2),2020/9/7,14,,,,,,,結(jié)構(gòu)分析編程及軟件應用,1、基本方程,3-2 線性桿元,線性桿元也是總體和局部坐標一致的一維有限單元,用線性函數(shù)描述,每個線性桿元有兩個節(jié)點(node),,,,,單剛矩陣為:,,總剛矩陣:,結(jié)構(gòu)方程:,單元節(jié)點力:,2020/9/7,15,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%Line
11、arBarElementStiffness This function returns the element % stiffness matrix for a linear bar with % modulus of elasticity E, cross-sectional % area A, and length L. The size of the % element stiffness matrix is 2 x 2.,,,2.1 單元剛度矩陣的形成,y = E*A/L -E*A/L ; -E*A
12、/L E*A/L;,function y = LinearBarElementStiffness(E,A,L),3-2 線性桿元,2020/9/7,16,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%LinearBarAssemble This function assembles the element stiffness % matrix k of the linear bar with nodes i and j % into the global stiffness matrix K. % This function ret
13、urns the global stiffness % matrix K after the element stiffness matrix % k is assembled.,,,,2.2 整體剛度矩陣的形成,K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K;,function y =LinearBarAssemble(K,k,i,j),3-2 線性桿元,2020/9/7,17,,,,結(jié)構(gòu)
14、分析編程及軟件應用,2、MATLAB函數(shù)編寫,%LinearBarElementForces This function returns the element nodal % force vector given the element stiffness % matrix k and the element nodal % displacement vector u.,,,,2.3 節(jié)點載荷計算,y = k * u;,function y = LinearBarElementForces(k,u),3-2 線性桿元,2020/9
15、/7,18,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%LinearBarElementStresses This function returns the element nodal % stress vector given the element stiffness % matrix k, the element nodal displacement % vector u, and the cross-sectional area A.,,,,2.4 節(jié)點應力計算,y = k * u/A;,function y
16、 = LinearBarElementStresses(k, u, A),3-2 線性桿元,2020/9/7,19,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,如圖所示二線性桿元結(jié)構(gòu),假定E=210MPa,A=0.003m2,P=10kN, 節(jié)點3的右位移為0.002m。 求:系統(tǒng)的整體剛度矩陣; 節(jié)點2的位移; 節(jié)點1、3的支反力; 每個桿件的應力,解:,步驟1:離散化域,3-2 線性桿元,2020/9/7,20,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,步驟2:形成單元剛度矩陣,k1=LinearBarElementStiffness(E,A
17、,L1),k2=LinearBarElementStiffness(E,A,L2),調(diào)用 function y = LinearBarElementStiffness(E,A,L)函數(shù),3-2 線性桿元,2020/9/7,21,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,步驟3:集成整體剛度矩陣,調(diào)用 function y = LinearBarAssemble(K,k,i,j)函數(shù),n=3; K = zeros(n,n),K = LinearBarAssemble (K,k1,1,2),K = 0 0 0 0 0 0 0 0 0,K = LinearBarA
18、ssemble (K,k2,2,3),3-2 線性桿元,2020/9/7,22,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,步驟4:引入邊界條件,,已知邊界條件:,3-2 線性桿元,2020/9/7,23,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,步驟5:解方程,,U=zeros(1,1); U3=0.002 F=-10; K = K(2,2) 105000 K0 = K(2,3); -630000 U=K(F-K0*U3),U =0.0012,3-2 線性桿元,2020/9/7,24,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,步驟6:后處
19、理,,U=0;U;0.002,U = 0 0.0012 0.0002,F=K*U,F = -500.0000 -10.0000 510.0000,u1=U(1:2); f1= LinearBarElementForces(k1,u1) sigma1=LinearBarElementStresses(k1, u1, A),u2=U(2:3); f2= LinearBarElementForces(k2,u2) sigma2=LinearBarElementStresses(k2, u2, A),3-2 線性桿元,2020/9/7,25,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用
20、,,,,,,E=210E6; A=0.003; L1=1.5; L2=1; k1= LinearBarElementStiffness(E,A,L1); k2= LinearBarElementStiffness(E,A,L2); n=3; K = zeros(n,n); K = LinearBarAssemble (K,k1,1,2); K = LinearBarAssemble (K,k2,2,3); U=zeros(1,1); U3=0.002; F=-10;,3-2 線性桿元,KK=K; K=K(2,2); K0=K(2,3); U=K(F-K0*U3); U=0;U;U3; F=K
21、K*U u1=U(1:2); f1= LinearBarElementForces(k1,u1) sigma1=LinearBarElementStresses(k1, u1, A) u2=U(2:3); f2= LinearBarElementForces(k2,u2) sigma2=LinearBarElementStresses(k2, u2, A),,2020/9/7,26,,,,,,,結(jié)構(gòu)分析編程及軟件應用,1、基本方程,3-3 二次桿元,二次桿元也是總體和局部坐標一致的一維有限單元,用二次方程描述,每個線性桿元有三個節(jié)點(node),,,,單剛矩陣為:,總剛矩陣:,結(jié)構(gòu)方程:,單
22、元節(jié)點力:,2020/9/7,27,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%QuadraticBarElementStiffness This function returns the element % stiffness matrix for a quadratic bar % with modulus of elasticity E, % cross-sectional area A, and length L. % The size of the element stiff
23、ness % matrix is 3 x 3.,,,2.1 單元剛度矩陣的形成,y = E*A/(3*L)*7 1 -8 ; 1 7 -8 ; -8 -8 16;,function y = QuadraticBarElementStiffness(E,A,L),3-3 二次桿元,2020/9/7,28,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%QuadraticBarAssemble This function assembles the element stiffness % matrix k of the quadratic b
24、ar with nodes i, j % and m into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix % k is assembled.,,,,2.2 整體剛度矩陣的形成,K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(i,m) = K(i,m) + k(1,
25、3); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2);,function y =QuadraticBarAssemble(K,k,i,j,m),3-3 二次桿元,K(j,m) = K(j,m) + k(2,3); K(m,i) = K(m,i) + k(3,1); K(m,j) = K(m,j) + k(3,2); K(m,m) = K(m,m) + k(3,3); y = K;,2020/9/7,29,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%QuadraticBarElementForces This functio
26、n returns the element nodal % force vector given the element stiffness % matrix k and the element nodal % displacement vector u.,,,2.3 節(jié)點載荷計算,y = k * u;,function y = QuadraticBarElementForces(k,u),3-3 二次桿元,2020/9/7,30,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%QuadraticBarElem
27、entStresses This function returns the element % nodal stress vector given the element % stiffness matrix k, the element nodal % displacement vector u, and the % cross-sectional area A.,,,,2.4 節(jié)點應力計算,y = k * u/A;,function y = QuadraticBarElementStresses
28、(k, u, A),3-3 二次桿元,2020/9/7,31,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,如圖所示雙二次桿元結(jié)構(gòu),假定E=210MPa,A=0.003m2 求:系統(tǒng)的整體剛度矩陣; 節(jié)點2、3、4、5的位移; 節(jié)點1的支反力; 每個桿件的應力,解:,3-3 二次桿元,2020/9/7,32,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,,,E=210E6; A=0.003; L=2; k1= QuadraticBarElementStiffness(E,A,L); k2= QuadraticBarElementStiffness(E,A,L
29、); n=5; K = zeros(n,n); K =QuadraticBarAssemble(K,k1,1,3,2); K =QuadraticBarAssemble(K,k2,3,5,4); U=zeros(4,1); F=5;-10;-7;10;,KK=K; K=K(2:n,2:n); U=KF; U=0;U; F=KK*U; u1=U(1);U(3);U(2); f1= QuadraticBarElementForces(k1,u1); sigma1=QuadraticBarElementStresses(k1, u1, A); u2=U(3);U(5);U(4); f2=Quadra
30、ticBarElementForces(k2,u2); sigma2=QuadraticBarElementStresses(k2, u2, A);,,3-3 二次桿元,2020/9/7,33,,,,,,,結(jié)構(gòu)分析編程及軟件應用,1、基本方程,3-4 平面桁架元,平面桁架元是既有局部坐標又有總體坐標二維有限元,用線性函數(shù)描述,每個平面桁架元有二個節(jié)點(node),,,,單剛矩陣為:,總剛矩陣:,結(jié)構(gòu)方程:,單元節(jié)點力:,2020/9/7,34,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%PlaneTrussElementLength This function returns
31、 the length of the % plane truss element whose first node has % coordinates (x1,y1) and second node has % coordinates (x2,y2).,,2.1 計算單元長度,y = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));,function y = PlaneTrussElementLength(x1,y1,x2,y2),3-4 平面桁架元,2020/9/7,35,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)
32、編寫,%PlaneTrussElementStiffness This function returns the element % stiffness matrix for a plane truss % element with modulus of elasticity E, % cross-sectional area A, length L, and % angle theta (in degrees). % The size of the element stiffness % matrix is
33、4 x 4.,,,2.2 單元剛度矩陣的形成,x = theta*pi/180; C = cos(x); S = sin(x); y = E*A/L*C*C C*S -C*C -C*S ; C*S S*S -C*S -S*S ; -C*C -C*S C*C C*S ; -C*S -S*S C*S S*S;,function y = PlaneTrussElementStiffness(E,A,L, theta),3-4 平面桁架元,2020/9/7,36,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%PlaneTrussAssemble This function assembl
34、es the element stiffness % matrix k of the plane truss element with nodes % i and j into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix k is assembled.,,,,2.3 整體剛度矩陣的形成,K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(
35、1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2); K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4); K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2); K(2*i,2*j-1) = K(2*i,2*j-1) + k(2,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);,function y =PlaneTrussAssemble(K
36、,k,i,j),K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2); K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4); K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*i) + k(4,2); K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j
37、) + k(4,4); y = K;,3-4 平面桁架元,,2020/9/7,37,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%PlaneTrussElementForce This function returns the element force % given the modulus of elasticity E, the % cross-sectional area A, the length L, % the angle theta (in degrees), and the % element nodal disp
38、lacement vector u.,,,2.4 節(jié)點載荷計算,x = theta * pi/180; C = cos(x); S = sin(x); y = E*A/L*-C -S C S* u;,function y = PlaneTrussElementForce(E,A,L,theta,u),3-4 平面桁架元,2020/9/7,38,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%PlaneTrussElementStress This function returns the element stress % given the modulus of ela
39、sticity E, the % the length L, the angle theta (in % degrees), and the element nodal % displacement vector u.,,,,2.5 節(jié)點應力計算,x = theta * pi/180; C = cos(x); S = sin(x); y = E/L*-C -S C S* u;,function y = PlaneTrussElementStress(E,L,theta,u),3-4 平面桁架元,2020/9/7,39,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例
40、計算分析應用,,,,如圖所示平面桁架結(jié)構(gòu),假定E=210MPa,A=0.0004m2 求:系統(tǒng)的整體剛度矩陣; 節(jié)點2的水平位移; 節(jié)點3的水平豎向位移; 節(jié)點1、2的支反力; 每跟桿件的應力,3-4 平面桁架元,2020/9/7,40,,,,結(jié)構(gòu)分析編程及軟件應用,1、基本方程,3-5 空間桁架元,空間桁架元是既有局部坐標又有總體坐標三維有限元,用線性函數(shù)描 述。各單元之間通過鉸接系統(tǒng)連接,只能傳遞力,而不能傳遞彎矩,每個桁架元有二個節(jié)點(node),,,,,2020/9/7,41,,,,結(jié)構(gòu)分析編程及軟件應用,1、基本方程,,3-5 空間桁架元,,,,總剛矩陣:,結(jié)
41、構(gòu)方程:,單元節(jié)點力:,單剛矩陣為:,2020/9/7,42,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%SpaceTrussElementLength This function returns the length of the % space truss element whose first node has % coordinates (x1,y1,z1) and second node has % coordinates (x2,y2,z2).,,2.1 計算單元長度,y = sqrt((x2-x1)*(x2-x1) + (y2-y
42、1)*(y2-y1) + (z2-z1)*(z2-z1));,function y = SpaceTrussElementLength(x1,y1,z1,x2,y2,z2),3-5 空間桁架元,2020/9/7,43,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%SpaceTrussElementStiffness This function returns the element % stiffness matrix for a space truss % element with modulus of elasticity E,
43、 % cross-sectional area A, length L, and % angles thetax, thetay, thetaz % (in degrees). The size of the element % stiffness matrix is 6 x 6.,,,2.2 單元剛度矩陣的形成,x = thetax*pi/180; u = thetay*pi/180; v = thetaz*pi/180; Cx = cos(x); Cy = cos(u); Cz = cos(v)
44、; w = Cx*Cx Cx*Cy Cx*Cz ; Cy*Cx Cy*Cy Cy*Cz ; Cz*Cx Cz*Cy Cz*Cz; y = E*A/L*w -w ; -w w;,function y = SpaceTrussElementStiffness(E,A,L,thetax,thetay,thetaz),3-5 空間桁架元,2020/9/7,44,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%SpaceTrussAssemble This function assembles the element stiffness % matrix k of the
45、space truss element with nodes % i and j into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix % k is assembled.,,,,2.3 整體剛度矩陣的形成,K(3*i-2,3*i-2) = K(3*i-2,3*i-2) + k(1,1); K(3*i-2,3*i-1) = K(3*i-2,3*i-1) + k
46、(1,2); K(3*i-2,3*i) = K(3*i-2,3*i) + k(1,3); K(3*i-2,3*j-2) = K(3*i-2,3*j-2) + k(1,4); K(3*i-2,3*j-1) = K(3*i-2,3*j-1) + k(1,5); K(3*i-2,3*j) = K(3*i-2,3*j) + k(1,6); K(3*i-1,3*i-2) = K(3*i-1,3*i-2) + k(2,1); K(3*i-1,3*i-1) = K(3*i-1,3*i-1) + k(2,2); K(3*i-1,3*i) = K(3*i-1,3*i) + k(2,3); K(3*i-1,3*j
47、-2) = K(3*i-1,3*j-2) + k(2,4); K(3*i-1,3*j-1) = K(3*i-1,3*j-1) + k(2,5); K(3*i-1,3*j) = K(3*i-1,3*j) + k(2,6);,function y =SpaceTrussAssemble(K,k,i,j),3-5 空間桁架元,2020/9/7,45,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,,,,2.3 整體剛度矩陣的形成,3-5 空間桁架元,K(3*j-1,3*i-2) = K(3*j-1,3*i-2) + k(5,1); K(3*j-1,3*i-1) = K(3*j-1,3*i
48、-1) + k(5,2); K(3*j-1,3*i) = K(3*j-1,3*i) + k(5,3); K(3*j-1,3*j-2) = K(3*j-1,3*j-2) + k(5,4); K(3*j-1,3*j-1) = K(3*j-1,3*j-1) + k(5,5); K(3*j-1,3*j) = K(3*j-1,3*j) + k(5,6); K(3*j,3*i-2) = K(3*j,3*i-2) + k(6,1); K(3*j,3*i-1) = K(3*j,3*i-1) + k(6,2); K(3*j,3*i) = K(3*j,3*i) + k(6,3); K(3*j,3*j-2) = K
49、(3*j,3*j-2) + k(6,4); K(3*j,3*j-1) = K(3*j,3*j-1) + k(6,5); K(3*j,3*j) = K(3*j,3*j) + k(6,6); y = K;,K(3*i,3*i-2) = K(3*i,3*i-2) + k(3,1); K(3*i,3*i-1) = K(3*i,3*i-1) + k(3,2); K(3*i,3*i) = K(3*i,3*i) + k(3,3); K(3*i,3*j-2) = K(3*i,3*j-2) + k(3,4); K(3*i,3*j-1) = K(3*i,3*j-1) + k(3,5); K(3*i,3*j) =
50、K(3*i,3*j) + k(3,6); K(3*j-2,3*i-2) = K(3*j-2,3*i-2) + k(4,1); K(3*j-2,3*i-1) = K(3*j-2,3*i-1) + k(4,2); K(3*j-2,3*i) = K(3*j-2,3*i) + k(4,3); K(3*j-2,3*j-2) = K(3*j-2,3*j-2) + k(4,4); K(3*j-2,3*j-1) = K(3*j-2,3*j-1) + k(4,5); K(3*j-2,3*j) = K(3*j-2,3*j) + k(4,6);,,2020/9/7,46,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLA
51、B函數(shù)編寫,%SpaceTrussElementForce This function returns the element force % given the modulus of elasticity E, the % cross-sectional area A, the length L, % the angles thetax, thetay, thetaz % (in degrees), and the element nodal % displacement vector u.,,2.4 節(jié)點載荷計算,x = thet
52、ax * pi/180; w = thetay * pi/180; v = thetaz * pi/180; Cx = cos(x); Cy = cos(w); Cz = cos(v); y = E*A/L*-Cx -Cy -Cz Cx Cy Cz*u;,function y = SpaceTrussElementForce(E,A,L,thetax,thetay,thetaz,u),3-5 空間桁架元,2020/9/7,47,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%SpaceTrussElementStress This function returns the elem
53、ent stress % given the modulus of elasticity E, the % length L, the angles thetax, thetay, % thetaz (in degrees), and the element % nodal displacement vector u.,,,,2.5 節(jié)點應力計算,x = thetax * pi/180; w = thetay * pi/180; v = thetaz * pi/180; Cx = cos(x); Cy = cos(w); Cz = cos(v);
54、 y = E/L*-Cx -Cy -Cz Cx Cy Cz*u;,function y = SpaceTrussElementStress(E,L,thetax,thetay,thetaz,u),3-5 空間桁架元,2020/9/7,48,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,如圖所示空間桁架結(jié)構(gòu),假定E=210MPa,A14=0.001m2 A24=0.002m2,A34=0.001m2,P=12kN 求:系統(tǒng)的整體剛度矩陣; 節(jié)點4的水平位移; 節(jié)點3的水平豎向位移; 節(jié)點1、2、3的支反力; 每跟桿件的應力,3-5 空間桁架元,2020/9/7,4
55、9,,,,結(jié)構(gòu)分析編程及軟件應用,1、基本方程,3-6 梁元,梁元是總體坐標與局部坐標一致的二維有限元,用線性函數(shù)描 述。各單元之間通過鉸接系統(tǒng)連接,只能傳遞力,而不能傳遞彎矩,每個梁元有二個節(jié)點(node),,,,,單剛矩陣為:,,,,總剛矩陣:,結(jié)構(gòu)方程:,單元節(jié)點力:,2020/9/7,50,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%BeamElementStiffness This function returns the element % stiffness matrix for a beam % element with
56、 modulus of elasticity E, % moment of inertia I, and length L. % The size of the element stiffness % matrix is 4 x 4.,,,2.1單元剛度矩陣的形成,y = E*I/(L*L*L)*12 6*L -12 6*L ; 6*L 4*L*L -6*L 2*L*L ; -12 -6*L 12 -6*L ; 6*L 2*L*L -6*L 4*L*L;,function y = BeamElementStiffness(E,I,L),3-
57、6 梁元,2020/9/7,51,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%BeamAssemble This function assembles the element stiffness % matrix k of the beam element with nodes % i and j into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix %
58、 k is assembled.,,,,2.2 整體剛度矩陣的形成,K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2); K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4); K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2); K(2*i,2*j-1) = K(2*i,2*j-1) + k(2
59、,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);,function y =BeamAssemble(K,k,i,j),3-6 梁元,K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2); K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4); K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*
60、i) + k(4,2); K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j) + k(4,4); y = K;,2020/9/7,52,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%BeamElementForces This function returns the element nodal force % vector given the element stiffness matrix k % and the element nodal displacement vector u.,2.
61、4 節(jié)點載荷計算,y = k * u;,function y = BeamElementForces(k,u),3-6 梁元,2020/9/7,53,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%BeamElementShearDiagram This function plots the shear force % diagram for the beam element with nodal % force vector f and length L.,2.4 繪制剪力圖,x = 0 ; L; z = f(1) ; -f(3); hold on; ti
62、tle(Shear Force Diagram); plot(x,z); y1 = 0 ; 0; plot(x,y1,k),function y = BeamElementShearDiagram(f, L),3-6 梁元,2020/9/7,54,,,,結(jié)構(gòu)分析編程及軟件應用,2、MATLAB函數(shù)編寫,%BeamElementMomentDiagram This function plots the bending moment % diagram for the beam element with nodal % force vector f and length L.,2.4 繪制彎矩圖,x = 0 ; L; z = -f(2) ; f(4); hold on; title(Bending Moment Diagram); plot(x,z); y1 = 0 ; 0; plot(x,y1,k),function y = BeamElementMomentDiagram(f, L),3-6 梁元,2020/9/7,55,,,,結(jié)構(gòu)分析編程及軟件應用,3、實例計算分析應用,,,,3-6 梁元,
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點美食推薦
- XX國有企業(yè)黨委書記個人述責述廉報告及2025年重點工作計劃
- 世界濕地日濕地的含義及價值
- 20XX年春節(jié)節(jié)后復工安全生產(chǎn)培訓人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點節(jié)后常見的八大危險
- 廈門城市旅游介紹廈門景點介紹廈門美食展示
- 節(jié)后開工第一課復工復產(chǎn)十注意節(jié)后復工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓
- 深圳城市旅游介紹景點推薦美食探索
- 節(jié)后復工安全生產(chǎn)培訓勿忘安全本心人人講安全個個會應急
- 預防性維修管理
- 常見閥門類型及特點
- 設備預防性維修
- 2.乳化液泵工理論考試試題含答案