秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文

上傳人:冷*** 文檔編號:18024196 上傳時間:2020-12-12 格式:DOCX 頁數(shù):2 大小:13.32KB
收藏 版權(quán)申訴 舉報 下載
經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文_第1頁
第1頁 / 共2頁
經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文_第2頁
第2頁 / 共2頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文》由會員分享,可在線閱讀,更多相關(guān)《經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文 經(jīng)濟分析應(yīng)用經(jīng)濟數(shù)學(xué)論文 2015/01/21 1經(jīng)濟分析與經(jīng)濟數(shù)學(xué)中的極限理論 經(jīng)濟數(shù)學(xué)知識的靈魂就是極限理論,就算是普通的數(shù)學(xué)知識,其大多數(shù)的概念都是在極限理論上導(dǎo)出的。如果用我國的古話說,那么“一尺之鋤,日取其半,萬世不竭”就是對極限理論最形象的描述。極限理論不僅在數(shù)學(xué)概念中起到了絕對的作用,在金融管理、金融投資、經(jīng)濟分析方面都占到了舉足輕重的位置。金融經(jīng)濟領(lǐng)域當中其實包含了很多事物,即生物的繁衍、成長的細胞組織、放射性元素的變化、人口的

2、流動與增長,以上這些事物當中都包含了極限理論的思想。另外,極限理論在金融經(jīng)濟領(lǐng)域中最為典型的運用是,銀行儲蓄連續(xù)復(fù)利的計算。舉個例子說明,一個人的一筆存款為A,銀行的年利率為r,若想立即產(chǎn)生和馬上結(jié)算,那么多年后的本金利率和利息的計算就可以采用到極限理論,如果想每年結(jié)算一次利息,則公式為A(1+r),如果一年是分多期進行計算,那么年利率仍然不變,但是每期的利率則為r/m,這樣一年后的本利和就為A(1+r/m),具體的算法就是,假如有100000元的資金在銀行進行儲存,時間為五年,該銀行年利率為10%,那么按照以上給出的概念,就應(yīng)該計算100000元到期后的本利,使用連續(xù)復(fù)利的公式就可以計算,即

3、P=Poe”=100000e=164872.2(元)。 2經(jīng)濟分析中導(dǎo)數(shù)的應(yīng)用 從實際的金融經(jīng)濟看來,其中很多的問題都與經(jīng)濟數(shù)學(xué)中的導(dǎo)數(shù)有著息息相關(guān)的聯(lián)系,數(shù)學(xué)家和金融學(xué)家都應(yīng)該知道,導(dǎo)數(shù)不管是在能夠領(lǐng)域當中,都有另一種感念,那就是領(lǐng)域邊際的感念。伴隨邊際感念的建立,導(dǎo)數(shù)成功進入了金融經(jīng)濟方面的學(xué)說之中,讓經(jīng)濟學(xué)的研究對象從傳統(tǒng)的定量轉(zhuǎn)變成為新時代下的變量,這種轉(zhuǎn)變也是數(shù)學(xué)理論在經(jīng)濟學(xué)中典型的表現(xiàn),對經(jīng)濟學(xué)的發(fā)展歷程也產(chǎn)生了重大影響。邊際成本函數(shù)、邊際利益函數(shù)、邊際收益函數(shù)、邊際需求函數(shù)等是導(dǎo)數(shù)中邊際函數(shù)中重要的幾點。由于函數(shù)的變化率是導(dǎo)數(shù)主要研究對象,當所研究函數(shù)的變量發(fā)生輕微變化時,導(dǎo)

4、數(shù)也要隨之進行變化。比如,導(dǎo)數(shù)可以對人類種群、人口流量的變化率進行研究。讓此理論在經(jīng)濟分析當中得以應(yīng)用,導(dǎo)數(shù)中的邊際函數(shù)分析就是對經(jīng)濟函數(shù)的變化量做出計算。經(jīng)濟數(shù)學(xué)中的導(dǎo)數(shù)不僅具有邊際概念,其另一方面就是彈性,簡單來說彈性研究就是對函數(shù)相對變化率問題進行探討的手段。例如,市場上的某件物品的需求量為Q,其價格則為p,彈性研究就是對兩種之間的關(guān)系進行研究,Q與p之間的關(guān)系公式則為:Q=p(8-3p);EQ/Ep=PQ/p=p(8-6p)/p(8-3p)=8-6p/8-3p。從以上的彈性關(guān)系公式我們可以了解到,當價格處于某個價格段位時,需求量與價格之間的彈性范圍將會得以縮小,但是當價格過于高時,需求

5、量的彈性范圍將會急劇增大。 經(jīng)濟最優(yōu)化選擇是導(dǎo)數(shù)在經(jīng)濟分析中另一個重要作用。不管是在經(jīng)濟學(xué)當中還是金融經(jīng)濟,實現(xiàn)產(chǎn)品價值最大化就要進行經(jīng)濟最優(yōu)化選擇,這也是經(jīng)濟決策制定時的必要依據(jù)。其實最優(yōu)化選擇問題在經(jīng)濟學(xué)中有一系列的因素要進行考慮,包括最佳資源、最佳產(chǎn)品利潤、最佳需求量、收入的最佳分配等。最優(yōu)化選擇中所使用的導(dǎo)數(shù),不僅利用到了導(dǎo)數(shù)的基本原理,還使用了極值的求證數(shù)學(xué)原理。例如,X單位在生產(chǎn)某產(chǎn)品是的成本為C(x)=300+1/12x-5x+170x,x單位所生產(chǎn)產(chǎn)品的單價為134元人民幣,求能讓利潤最大化的產(chǎn)量。那么以下就是作者利用經(jīng)濟數(shù)學(xué)的一個解法:已知總收入R(x)=134x,利潤l(

6、x)=R(x)-C(x)=-1/12x+5x-36x-300,那么我們就可以利用數(shù)學(xué)知識算出:L(x)=R(x)-C(x)=-1/4x+10x-36,然后再通過導(dǎo)數(shù)的二階驗證法,得出x=36,所以最后就可以斷定當該產(chǎn)品的生產(chǎn)量為36時,企業(yè)會得到最大利潤。 3微積分方程在經(jīng)濟實際問題中的運用 一般的經(jīng)濟活動就是量與量之間的交往過程,在這個交往過程當中函數(shù)是其中最主要的元素,但是從實際的經(jīng)濟問題上看,其函數(shù)之間的關(guān)系式比較復(fù)雜,導(dǎo)致量與量之間的種種關(guān)系也不能快速準確的寫出。但是,實際變量、導(dǎo)數(shù)和微積分之間的關(guān)系確實可以很好的建立。微積分方程的基礎(chǔ)定義為,方程中包含自變量、未知函數(shù)和導(dǎo)數(shù)。由于

7、導(dǎo)數(shù)和函數(shù)的出現(xiàn),所以說微積分方程在經(jīng)濟數(shù)學(xué)當中的用途也是很大。在實際的經(jīng)濟問題當中,微積分方程中函數(shù)可能會存在兩個或者兩個以上,這點就不同于經(jīng)濟學(xué)中的理論知識,對于處理這種問題作者也是大有見解。當微積分方程中出現(xiàn)兩個或兩個以上函數(shù)時,我們可以先將其中的一個函數(shù)當中常變量,然后使用單變量經(jīng)濟問題來進行單獨解決,這是我們就需要用到導(dǎo)數(shù)的偏向理論知識。不僅是微積分方程,在處理經(jīng)濟問題的時候我們還可能使用到全積分、微分等一些基層理論知識來供我們參考。 4結(jié)論 數(shù)學(xué)這一學(xué)科的基本就是以計算數(shù)據(jù)為基礎(chǔ),其中數(shù)學(xué)的理論知識不僅可以在本學(xué)科中得以運行,在不同的行業(yè)領(lǐng)域中數(shù)學(xué)的各種知識都有很好的運行,在這些行業(yè)領(lǐng)域中金融使用的數(shù)學(xué)知識可以說是最為全面的,所以我們要更全面地融合數(shù)學(xué)和經(jīng)濟兩者之間理論知識。金融領(lǐng)域當中的各種數(shù)據(jù)都需要精確的計算,從而保證企業(yè)和市場的平衡,也是對老百姓日常生活的保障,那么經(jīng)濟數(shù)學(xué)技術(shù)必須變得更加成熟。 作者:馬俊單位:吉林廣播電視大學(xué)松原分校

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!