有壓邊裝置的后續(xù)拉深模運動仿真【說明書+PROE+仿真】
有壓邊裝置的后續(xù)拉深模運動仿真【說明書+PROE+仿真】,說明書+PROE+仿真,有壓邊裝置的后續(xù)拉深模運動仿真【說明書+PROE+仿真】,有壓邊,裝置,后續(xù),拉深模,運動,仿真,說明書,仿單,proe
有壓邊裝置的后續(xù)拉深模運動仿真
摘 要
拉深是利用金屬的塑性變形,用拉深工藝可以制得筒形,階梯形等直壁旋轉(zhuǎn)體零件,也可以制成方盒形等直壁非旋轉(zhuǎn)體零件。采用彎曲成形的零件種類繁多,這里主要以有壓邊裝置的后續(xù)拉深模進(jìn)行說明。
本畢業(yè)設(shè)計所要解決的問題是通過動畫的形式來闡述:模具根據(jù)橡皮彈力的不同對工件進(jìn)行兩次彎曲,得到了筒形拉深件,借助Pro/ENGINEER軟件中動畫命令使模具工作過程和原理變得很容易理解。并進(jìn)一步學(xué)習(xí)和理解Pro/ENGINEERe軟件的高級命令。
關(guān)鍵詞:彎曲 Pro/ENGINEER 動畫 后續(xù)拉深
There are follow-up device Blankholder Drawing Die Motion Simulation
Abstract
Drawing is the use of metal plastic deformation, the deep drawing process can be obtained cylindrical, straight wall, such as ladder-shaped rotating body parts can also be made, such as straight-walled box-shaped body of non-rotating parts. Bending the use of a wide range of parts, where the main devices in a follow-up Blankholder Drawing Die explain.
??The graduated design problem to be solved through the animation of the form: elastic rubber mold in accordance with the two different bending of the workpiece has been drawing tube, using Pro / ENGINEER software in order to make animation work process and the principle of mold become very easy to understand. And further study and understanding of Pro / ENGINEERe senior command software.
Keywords: Bending Pro / ENGINEER drawing animated follow-up
河南機電高等??茖W(xué)校畢業(yè)設(shè)計說明書
1.緒 論
目前,我國沖壓技術(shù)與工業(yè)發(fā)達(dá)國家相比還相當(dāng)?shù)穆浜?,主要原因是我國在沖壓基礎(chǔ)理論及成形工藝、模具標(biāo)準(zhǔn)化、模具設(shè)計、模具制造工藝及設(shè)備等方面與工業(yè)發(fā)達(dá)的國家尚有相當(dāng)大的差距,導(dǎo)致我國模具在壽命、效率、加工精度、生產(chǎn)周期等方面與工業(yè)發(fā)達(dá)國家的模具相比差距相當(dāng)大。
1.1 Pro/ENGINEER簡介
1988年,V1.0的Pro/ENGINEER誕生了。經(jīng)過10余年的發(fā)展,Pro/ENGINEER已經(jīng)成為三維建模軟件的領(lǐng)頭羊。目前已經(jīng)發(fā)布了Pro/ENGINEER2000i2。PTC的系列軟件包括了在工業(yè)設(shè)計和機械設(shè)計等方面的多項功能,還包括對大型裝配體的管理、功能仿真、制造、產(chǎn)品數(shù)據(jù)管理等等。Pro/ENGINEER還提供了目前所能達(dá)到的最全面、集成最緊密的產(chǎn)品開發(fā)環(huán)境。
Pro/ENGINEER Wildfire 3.0系統(tǒng)是一個大型軟件包,它支持并行工作和協(xié)同工作,是一個應(yīng)用廣泛、功能強大的CAD/CAE/CAM工程設(shè)計軟件,它將產(chǎn)品從設(shè)計到生產(chǎn)加工的過程集成在一起,并且能夠?qū)崿F(xiàn)所有用戶同時參與同一產(chǎn)品的設(shè)計和制造工作。
Pro/ENGINEER Wildfire 3.0系統(tǒng)由以下六大主模塊組成:工業(yè)設(shè)計(CAID)模塊、機械設(shè)計(CAD)模塊、功能仿真(CAE)模塊、制造(CAM)模塊、數(shù)據(jù)管理(PDM)模塊和數(shù)據(jù)交換(Geometry Translator)模塊。這些主模塊又包含了許多不同的子模塊,每種子模塊可完成不同的設(shè)計、分析和制造功能,Pro/E的動畫模塊可以制作出模擬產(chǎn)品運動、裝配、構(gòu)造等展示性的動畫,無需單獨安裝。
Pro/ENGINEER是美國PTC公司的標(biāo)志性軟件產(chǎn)品,是一套由設(shè)計至生產(chǎn)的機械自動化軟件。自1988年問世以來,引起了機械CAD/CAE/CAM界的極大震動,由于其強大的功能,很快得到業(yè)內(nèi)人士的普遍歡迎,其銷售額連年遞增,并使其迅速稱為當(dāng)今世界最為流行的CAD軟件之一。自20世紀(jì)90年代中期,國內(nèi)許多大型企業(yè)開始選用Pro/ENGINEER,發(fā)展至今,已擁有了相當(dāng)打的用戶群。
1.1.1 Pro/ENGINEER的特點
Pro/ENGINEER采用了單一數(shù)據(jù)庫、參數(shù)化、基于特征及工程數(shù)據(jù)再利用等概念,改變了MDA的傳統(tǒng)觀念,這種全新的概念已成為當(dāng)今世界MDA(Mechanical Design Automation,機械設(shè)計自動化)領(lǐng)域的新標(biāo)準(zhǔn)。利用此概念開發(fā)的軟件Pro/ENGINEER能將產(chǎn)品從設(shè)計至生產(chǎn)的過程集中到一起,讓所用的同時進(jìn)行同一產(chǎn)品的設(shè)計制造工作,即所謂的并行工程。
Pro/ENGINEER具有一下特點。
(1)參數(shù)化設(shè)計和特征功能。Pro/ENGINEER是采用參數(shù)化設(shè)計的、基于特征的實體模擬化系統(tǒng),工程設(shè)計人員采用具有智慧特性的基于特征的功能去生成模型,如腔、殼、倒角及圓角,可以隨意勾畫草圖,輕易改變模型。這一功能特性給工程設(shè)計者提供了設(shè)計上從未有過的簡易和靈活。
(2)單一數(shù)據(jù)庫。Pro/ENGINEER是建立在統(tǒng)一基層的數(shù)據(jù)庫上的,不像一些傳統(tǒng)的CAD/CAM系統(tǒng)建立在多個數(shù)據(jù)庫上。所謂單一數(shù)據(jù)庫,就是工程中的資料全部來自一個庫,使得每一個獨立用戶在為一件產(chǎn)品造型而工作,不管他是哪一個部門的,換言之,再整個設(shè)計過程的任何一處發(fā)生改動,可以反映再整個設(shè)計過程的相關(guān)環(huán)節(jié)上。例如,一旦工程詳圖有改變,NC(數(shù)控)工具路徑也會自動更新;組裝工程圖如有任何變動,也完全同樣反映再整個三維模型上,這種獨特的數(shù)據(jù)結(jié)構(gòu)與工程設(shè)計的完整地結(jié)合,使得一件產(chǎn)品的設(shè)計能結(jié)合起來。這一優(yōu)點,使得設(shè)計更優(yōu)化,產(chǎn)品質(zhì)量更高,價格也更便宜,產(chǎn)品能更好的推向市場。
(3)工程數(shù)據(jù)再利用。設(shè)計產(chǎn)品時生成的工程數(shù)據(jù)是整個設(shè)計中的關(guān)鍵所在,產(chǎn)品的外形尺寸和結(jié)構(gòu)功能是由工程數(shù)據(jù)所驅(qū)動的,對工程數(shù)據(jù)的變更可以迅速反映在整個產(chǎn)品上。工程數(shù)據(jù)庫再利用可以讓使用者快速生成整個產(chǎn)品系列,從而簡化了產(chǎn)品的設(shè)計更改,更容易實現(xiàn)產(chǎn)品的系列化設(shè)計。
1.1.2 Pro/ENGINEER的模塊與功能
Pro/ENGINEER 采用了模塊方式,保證用戶可以按照自己的需要進(jìn)行選擇使用。目前共有20多個模塊,涉及工業(yè)設(shè)計、機械設(shè)計、功能仿真、加工制造等方面,為用戶提供全套解決方案。
下面介紹Pro、ENGINEER中的一部分模塊和功能,某些模塊和功能在設(shè)計中的應(yīng)用將在書本的后續(xù)章節(jié)中進(jìn)行詳細(xì)講解。
1.Pro/ENGINEER基本模塊
Pro/ENGINEER基本模塊是整個系統(tǒng)的基本部分,其他模塊都是在基本模塊上擴展實現(xiàn)的。基本模塊不僅包括了特征建模工具,也可實現(xiàn)模型的參數(shù)化定義,這種參數(shù)功能可采用關(guān)系式賦予零件形體尺寸,而不像其他系統(tǒng)是直接指點一些數(shù)值于形體。這樣工程師可任意建立形體上的尺寸和功能之間的關(guān)系,任何一個參數(shù)改變,其他相關(guān)的特征也會自動修正。這樣功能使得修改更為方便,可令設(shè)計優(yōu)化更趨完美。Pro/ENGINEER的特征建模是通過各種不同的設(shè)計專用功能來實現(xiàn)的,其中包括:筋(Ribs)、槽(Slots)、倒角(Chamfers)和抽空(Shells)等。采用這種手段來建立形體,對于工程師來說更自然,更直觀,而無需采用復(fù)雜的幾何設(shè)計方式。
2. 裝配模塊Pro/ASSEMBLY
Pro/ASSEMBLY是一個參數(shù)化組裝管理系統(tǒng),允許將原件零件和子組件放置在一起以形成組件??蓪υ摻M件進(jìn)行修改、分析或重新定向。
SPro/ASEMBLY具有如下功能。
(1) 裝配功能。此功能提供了基本的裝配工具,能夠?qū)⒘慵凑找?guī)定的位置裝配并約束其全部或有限的自由度。
(2) 簡化表示。簡化表示是一個模型的變體,可用此模型來改變某一特定設(shè)計的視圖效果,從而可以控制Pro/ENGINEER 調(diào)入進(jìn)程并顯示的組件成員。這樣就能定制工作環(huán)境使其只包含當(dāng)前關(guān)注的信息。
(3) 互換組件?;Q組件是一種可創(chuàng)建并在設(shè)計組件中使用的特殊類型組件。互換組件由與功能或表示相關(guān)的模型組成。
(4) 骨架模型。骨架模型是組件的一種特殊元件,它定義組件設(shè)計的骨架、空間要求、界面及其他物理屬性,此組件設(shè)計主要用于定義元件的幾何形體。另外還可在組件上采用骨架模型進(jìn)行運動分析,即首先創(chuàng)建骨架模型的放置參照,然后修改骨架尺寸以模仿運動。
(5) 自頂向下設(shè)計。通過Pro/NOTEBOOK 來實現(xiàn)自頂向下設(shè)計功能,這是一個可選模塊,它為創(chuàng)建層次相連的組件布局提供了工具,支持自頂向下的組件設(shè)計。
3. 工程圖模塊Pro/DETAIL
Pro/ENGINEER提供了一個強大的生成工程圖的能力,包括:自動尺寸標(biāo)注,參數(shù)特征生成,全尺寸修飾,自動生成投影面、輔助面、截面和局部視圖。Pro/DETAIL擴展了Pro/ENGENEER的基本功能,允許直接從Pro/ENGENEER的實體造型產(chǎn)品生成符合ANSI/ISO/DIN標(biāo)準(zhǔn)的工程圖。
4. 金模塊Pro/SHEETMETAL
Pro/SHEETMETAL擴展了Pro/ENGINEER的設(shè)計功能,用戶可建立參數(shù)化的鈑金造型和金組裝,包括生成金屬板的設(shè)計模型以及將它們放平成平面圖形。Pro/SHEETMETAL還提供了通過參照折彎庫彎曲和放平能力,允許通過彎曲或放平狀態(tài)下的模型附加特征的功能,同時支持生成、庫儲存和替換用戶可自定義的特征。
5. 數(shù)控加工模塊Pro/NC
Pro/NC 模塊能生成驅(qū)動數(shù)控機床加工零件所必需的數(shù)據(jù)和信息,能夠生成數(shù)控加工的全過程。它將生產(chǎn)過程生產(chǎn)規(guī)劃與設(shè)計造型連接起來,所以任何在設(shè)計上的改變,軟件也能自動地將已做過的生產(chǎn)上的程序和資料也自動的重新產(chǎn)生,而無需用戶自行修改。它將具備完整關(guān)聯(lián)性的Pro/ENGINEER產(chǎn)品線延伸至加工制造的工作環(huán)境里。Pro/NC的應(yīng)用范圍較廣泛,包括數(shù)控車床、數(shù)控銑床、數(shù)控線切割、三軸至五軸的加工中心。
6. 自由曲面造型模塊Pro/ISDX
Pro/ISDX模塊用來設(shè)計帶有復(fù)雜曲面的產(chǎn)品,它擴展了Pro/ENGINEER的生生、輸入和編輯復(fù)雜曲面和曲線的功能。Pro/ISDX提供了一系列必要的工具,使得工程師們在整個工業(yè)范圍內(nèi)很容易地生成用于飛機和汽車的曲線和曲面、船殼設(shè)計以及通常所碰到的復(fù)雜設(shè)計問題。
7. 模具設(shè)計和鑄造模塊
Pro/MOLDESIGN是Pro/ENGINEER的模具設(shè)計模塊,提供在Pro/ENGINEER內(nèi)模擬模具設(shè)計工藝時使用的工具。此模塊允許創(chuàng)建、修改和分析模具元件和組件,并可根據(jù)設(shè)計模型中的變化對它們快速更新。
Pro/CASTING提供設(shè)計模具組件和元件用的工具并為制造做鑄造準(zhǔn)備。
8. 電纜和布線設(shè)計模塊Pro/CABLING
使用Pro/CABLING模塊可在Pro/ENGINEER組件中定義三維電纜線束。在CABLING中,電纜布線可與電氣及機械元件和裝配同步進(jìn)行。Pro/CABLING從示意圖中提取邏輯信息的能力極大的推動了三維電纜布置的自動化。另外,關(guān)聯(lián)的線束制造和文檔工具減少了錯誤和返工。
9. 管道設(shè)計Pro/PIPLING
Pro/PIPLING是可選的Pro/ENGINEER模塊,可通過組件模式進(jìn)行訪問。使用Pro/PIPLING能夠在Pro/ENGINEER組件中生成三維管道系統(tǒng)。可在規(guī)范驅(qū)動或非規(guī)范驅(qū)動的管道設(shè)計模塊中創(chuàng)建管道系統(tǒng)。管道系統(tǒng)的創(chuàng)建包括建立管道參數(shù)、布線以及插入管接頭。
10. 行為建模擴展模塊Behavioral Modeling
Behavioral Modeling擴展可實現(xiàn)模型的分析和優(yōu)化,它具有一下功能。
(1)以相關(guān)方式在模型中嵌入設(shè)計需求,從而永久解決了涉及多個設(shè)計目標(biāo)的實際問題。
(2)評估模型靈敏度以了解變更對設(shè)計目標(biāo)的影響。
(3)通過開放式環(huán)境將結(jié)果與外部應(yīng)用程序(如Microsoft Excel)集成在一起。
(4)不管采用何種構(gòu)造方式,均允許考慮所有設(shè)計需求,從而產(chǎn)生出最佳設(shè)計。
(5)跨Pro/ENGINEER的多個功能區(qū)域進(jìn)行實驗性的研究。
11.結(jié)構(gòu)和熱力學(xué)分析Pro/MECHANICA
Pro/MECHANICA用來對產(chǎn)品的力學(xué)和熱力學(xué)結(jié)構(gòu)進(jìn)行分析評估并進(jìn)行優(yōu)化。通過一整套高級功能,Pro/MECHANICA使工程師能全面評估和優(yōu)化其設(shè)計,在減少樣機研制費用的同時改進(jìn)產(chǎn)品質(zhì)量。此模塊的功能和特點如下。
(1) 解決非線性大位移、預(yù)應(yīng)力、動態(tài)和瞬態(tài)熱分析問題。
(2) 對高級材料特性進(jìn)行仿真,例如各向異性、正交各向異性和復(fù)合層壓板。
(3) 支持高級建模實體,例如質(zhì)量/彈簧理想化和預(yù)負(fù)荷螺栓。
(4) 通用的界面、工作流程和用戶概念,使用戶如同置身于Pro/ENGINEER的核心設(shè)計區(qū)域中。
(5) 通過精確仿真復(fù)雜系統(tǒng),減少產(chǎn)品性能的不確定性。
根據(jù)產(chǎn)品類型和設(shè)計需要來選擇合適的模塊,以便降低購買軟件的開支,若將來企業(yè)擴大規(guī)模或產(chǎn)品類型發(fā)生改變,可隨時購買需要的模塊添加到現(xiàn)有的平臺中
針對不同規(guī)模的企業(yè),PTC公司推出了不同的Pro/ENGINEER軟件包,軟件包分為基礎(chǔ)、高級和企業(yè)三個層次,為各種企業(yè)提供了產(chǎn)品設(shè)計的解決方案。2007年,PTC對Pro/ENGINEER軟件包進(jìn)行了重新命名,以打造一個可伸縮的系統(tǒng),使用戶能夠輕松快捷地找出最適合自己需求的軟件包。PTC公司提供了以下5種Pro/ENGINEER軟件包。
(1) Pro/ENGINEER Foundation XE
功能模塊:三維CAD設(shè)計(高級建模、繪圖、裝配、鈑金件等)。
(2)Pro/ENGINEER Advanced SE
功能模塊:三維CAD設(shè)計,外加產(chǎn)品數(shù)據(jù)管理(PDM)。
(3)Pro/ENGINEER Advanced XE
功能模塊:三維CAD設(shè)計、PDM以及任選一種擴展設(shè)計附件(自由形狀曲面設(shè)計、自頂向下設(shè)計、管路/電纜設(shè)計、機構(gòu)設(shè)計、優(yōu)化)。
(4)Pro/ENGINEER Enterprise SE
功能模塊:三維CAD、PDM以及任選一種擴展設(shè)計附件,外加協(xié)同/項目管理。
(5)Pro/ENGINEER Enterprise XE
功能模塊:三維CAD、PDM、擴展設(shè)計CAD附件、協(xié)同/項目管理,外加仿真和分析、工程計算、企業(yè)可視化、文檔編輯器和基于Web的培訓(xùn)。
第 6 頁 共 23 頁
2.本次動畫設(shè)計論述所要解決的問題
運用Pro ENGINEER野火3.0 對《沖壓工藝與模具設(shè)計》書本上的第4章《彎曲工藝與彎曲模具設(shè)計》第9節(jié)第2個知識點圖4.45有壓邊裝置的后續(xù)拉深模具結(jié)構(gòu)分析畫圖,如下圖2-1所示:,零件造型好后,然后經(jīng)過零部件裝配,運用Pro ENGINEER野火3.0里的動畫模塊進(jìn)行動畫設(shè)計,經(jīng)過動畫設(shè)計用三維的動態(tài)效果來解釋復(fù)雜的模具工作原理,且容易理解。
本次設(shè)計說明書的要求就是進(jìn)一步解釋動畫制作的基本步驟和方法,根據(jù)我的學(xué)習(xí)下面將本動畫的詳細(xì)步驟敘述于下,希望老師給以檢閱審查,提出問題和建議。
圖2-1
圖為有壓邊裝置的后續(xù)拉深模。拉伸前,半成品毛坯套在壓邊圈4上,壓邊圈,演變?nèi)男螤畋仨毰c上一次拉出來的半成品毛坯形狀一致。上模下行,首先將半成品毛坯壓平整在壓邊圈與拉深凹模之間。
3.動畫的制作總過程
3.1動畫的制作步驟簡介
a)首先在Pro/E 3.0里的零件模塊,造型設(shè)計建立如圖2-1所示的每一個零部件。
b)然后在組建模塊把各零部件進(jìn)行裝配。裝配完成后刪除部分裝配約束,以便后續(xù)工作的進(jìn)行。
c)裝配完成后,點擊【執(zhí)行應(yīng)用程序】——【動畫】進(jìn)入動畫設(shè)計模式,逐步對裝配好的模具裝配圖進(jìn)行分析,經(jīng)Pro/E 3.0動畫模塊里內(nèi)置拍照功能,完成從模具開始工作前到彎曲完成后的整個過程的拍照工作。
d)選擇和按順序整理照片(snapshot1——snapshot*)會形成KSF時間幀,按模具動作過程,合理拖動每個幀節(jié)的位置,以便以后輸出的動畫的播放速度節(jié)奏一致。
e)完成KSF時間幀合理調(diào)節(jié)后,點擊啟動動畫功能,動畫從頭到尾會播放一遍,在回放功能里面經(jīng)過捕捉輸出成視頻動畫文件。
3.2帶壓邊裝置的后續(xù)拉深模模具動畫的制作進(jìn)度
? 了解目前國內(nèi)外沖壓模具的發(fā)展現(xiàn)狀,所用時間1天;
? 學(xué)習(xí)和了解本模具的工作原理所用時間3天;
? 本模具各個零部件設(shè)計所用時間2天;
? 模具的裝配,所用時間1天;
? 動畫的制作和總體輸出動畫.修改動畫,所用時間12天。
4.動畫制作詳細(xì)步驟
2 4.1 Pro/E 3.0動畫模塊的初步認(rèn)識
運行Pro/E 3.0,在【文件】下拉菜單先設(shè)置工作目錄在-沖壓作業(yè)目錄下,然后在【文件】的下拉菜單點擊【打開】打開裝配好的模具裝配圖。首先設(shè)定一個視圖方向,為以后的方向一致性做準(zhǔn)備如圖4-1所示 :然后點擊【應(yīng)用程序】--【動畫】如圖4-2所示,進(jìn)入動畫的編輯制作。
圖 4-1
在圖4-1中所示在名稱中建立一個【重定向視圖】,保存。
圖4-2
如圖4-2所示,進(jìn)入動畫的編輯制作。
工具條各個圖標(biāo)命令認(rèn)識:
1) 進(jìn)入動畫設(shè)計模式參考圖一的工具列,由左至右使用圖形按鈕來完成整個動畫的制作。
2)
3) 為新建動畫圖標(biāo),自定義動畫名稱;
4) 為動畫中的主體定義圖標(biāo),可以把裝配好的模具圖的零件連接成一個剛體,也可以分散為每個零件以個獨立的體
5) 動畫模塊中的創(chuàng)建新關(guān)鍵幀序列圖標(biāo);
6) 為啟動動畫圖標(biāo),調(diào)整好KFS時間幀后,點此圖標(biāo),啟動動畫;
7) 動畫回放圖標(biāo),在此對話框中可以回放動畫和經(jīng)過捕捉,輸出成視頻動畫文件;
8) 為刪除時間幀圖標(biāo)。
了解動畫模塊里的常用圖標(biāo)命令后開始動畫的制作。
點擊圖標(biāo),新建動畫,在此對話框中可自定義動畫名稱(名稱0),如圖4-3所示:
圖4-3
新建好自定義的動畫名稱后,關(guān)閉窗口。
點擊 圖標(biāo),彈出如圖4-4對話框,在未操作之前,每一個組成裝配圖的零件都是一個 boyd檢查裝配模具圖的整個剛體情況,根據(jù)本次的模具工作上模下行在拉深之前的過程可以把上模部分整體連接成一個剛體,下模部分在模具工作前先不對其進(jìn)行操作。
圖4-4
點擊 圖標(biāo) ,彈出如圖4-5對話框,進(jìn)行動畫的關(guān)鍵幀序列搜集和整理。
首先完成送料過程,在4-5對話框中點擊圖標(biāo),彈出如圖4-6拖動對話框,在此先點拍下送料前的一張圖snapshot1,然后在圖4-6對話框中點擊點拖動圖標(biāo),選擇拖動的方向X軸方向,然后鼠標(biāo)選擇坯料沿X方向模具凸模正上方中,然后選擇拖動的方向Y軸方向,然后鼠標(biāo)選擇坯料沿Y方向模具凸模上送進(jìn),經(jīng)調(diào)整合適,送料完成完成,然后再點擊圖標(biāo)拍下送料后的一張圖snapshot2,如圖4-7所示。
圖 4- 5
圖 4-6
圖 4-7
送料過程完成,下一步是上模下行,上模整體已經(jīng)在之前連接成一個剛體,按剛才送料方式進(jìn)入4-6對話框,點擊點拖動圖標(biāo),選擇拖動方向Y方向,然后用鼠標(biāo)選擇上模部分,沿Y方向垂直向下拖動,拖動凸模接觸坯料停止;然后點擊圖標(biāo)拍下上模下行后的圖snapshot3,完成上模下行的操作,如圖4-8所示。
圖4-8
點擊【文件】——【保存】本次操作記錄。
2 4.2模具拉深動畫制作
因為Pro/E軟件動畫模塊功能里對動畫制作完全是瞬間拍照,然后經(jīng)過圖片的連接完成一連續(xù)的動畫;此模具的運動過程是彎曲,而在軟件中,坯料不能隨著凸模的下行而自動拉深變形,因為此動畫是拉深模具工作過程,在拉深過程中前次拉深件在拉深凸模和拉深凹模之間在工作過程中不顯示制件,橡皮的變化是靠上壓板下行時的覆蓋作用期的壓縮效果,制作此動畫只有根據(jù)凸模下行拉深完成后取件出拉深成形件完成帶有壓邊裝置的后續(xù)拉深模的動畫制作。
在此過程中,打開裝配模型,首先進(jìn)入Pro/E【標(biāo)準(zhǔn)】,在窗口左側(cè)的模型樹里選擇每個部能的零件右擊選擇【編輯定義】,彈出的對話框出現(xiàn), 圖標(biāo),點擊此圖標(biāo)進(jìn)入裝配約束環(huán)境,手動刪除每個零件之間的約束。以便在以后后續(xù)動畫的運動過程不造成約束干澀。如圖4-9所示:
圖4-9
完成約束刪除后,在完成各項裝配后隱藏后序工作中需要取出的制件的,點擊【應(yīng)用程序】-【動畫】開始模具彎曲過程的動畫制作。
因為此過程中部分零件有不同位置的變化,所以在在動畫中的主體定義時有必要選擇性的編輯剛體,進(jìn)入【動畫】模塊后,點擊 如圖4-10所示 :
圖4-10
新建自定義動畫名稱(名稱01)。
點擊編輯主體定義,上模部分的上模座和拉深凹模和推件板和固定螺釘和下模部分的頂桿和上壓板接成一剛體,打料桿是獨立的,下模部分除頂桿和上板壓板外其余全部連接成一剛體。
點擊圖標(biāo),進(jìn)行對此狀態(tài)的拍照,進(jìn)入對話框后,點擊點拖動,然后在中選擇Y方向,鼠標(biāo)選擇上模部分上模下行至拉深模完成拉深過程的底部,如圖4-11所示:
圖4-11
點擊圖標(biāo)對此狀態(tài)進(jìn)行拍照生成snapshot4,然后點關(guān)閉,完成拍照,會自動退入如圖4-12對話框:點擊確定保存snapshot4。
圖4-12
點擊圖標(biāo)進(jìn)入創(chuàng)建關(guān)鍵幀序列對話框,如圖添加snapshot1,snapshot2,snapshot3。點擊確定圖標(biāo),完成送料 上模下行至工件表面的關(guān)鍵幀鼠標(biāo)手動拖動倒三角形,調(diào)整適合的動作時間。
點擊啟動動畫圖,送料過程和上模下行至工件表面的動畫從頭到尾運行一次,檢查無錯誤,點擊回放圖標(biāo),彈出如圖4-13所示回放對話框,點【捕獲】圖標(biāo)進(jìn)入如圖4-14對話框,在瀏覽框里輸入“拉深1”,其他全部按默認(rèn),點確定輸出動畫。
圖 4-13
圖 4-14
完成送料和上模下行拉深完成動畫的輸出。
點擊圖標(biāo),進(jìn)行對此狀態(tài)的拍照,進(jìn)入對話框后,點擊點拖動,然后在中選擇Y方向,鼠標(biāo)選擇上模部分上?;爻讨寥鐖D4-15所示:
圖 4-15
點擊圖標(biāo)對此狀態(tài)進(jìn)行拍照生成snapshot5后點關(guān)閉,完成拍照,會自動退入如圖4-16對話框,點擊確定保存好剛拍snapshot5。
圖4-16
點擊圖標(biāo)對此狀態(tài)進(jìn)行拍照生成snapshot6后點關(guān)閉,完成拍照,會自動退入如圖4-16對話框,點擊確定保存好剛拍snapshot6。
點擊圖標(biāo),進(jìn)行對此狀態(tài)的拍照,進(jìn)入對話框后,點擊點拖動,然后在中選擇Y方向,鼠標(biāo)選擇拉深后工件沿Y方向上行程至取件適合高度,然后選擇X方向沿X方向向右移動拉深后制件,定位拉深后工件旋轉(zhuǎn),用鼠標(biāo)拖拽拉深后制件繞X軸旋轉(zhuǎn)適合位置,形象直觀的顯示拉深后制件,如圖4-17所示:
圖4-17
點擊圖標(biāo)對此狀態(tài)進(jìn)行拍照生成snapshot7后點關(guān)閉,完成拍照,會自動退入如圖4-18對話框,點擊確定保存好剛拍snapshot7。
圖4-18
點擊圖標(biāo)進(jìn)入創(chuàng)建關(guān)鍵幀序列對話框,如圖添加snapshot4,snapshot5,snapshot6,snapshot7。點擊確定圖標(biāo),完成送料 上模下行至工件表面的關(guān)鍵幀鼠標(biāo)手動拖動倒三角形,調(diào)整適合的動作時間。
點擊啟動動畫圖,上?;爻毯腿〖赢嫃念^到尾運行一次,檢查無錯誤,點擊回放圖標(biāo),彈出如圖4-219所示回放對話框,點【捕獲】圖標(biāo)進(jìn)入如圖4-20對話框,在瀏覽框里輸入“拉深2”,其他全部按默認(rèn),點確定輸出動畫。
圖 4-19
圖 4-20
完成送料和上模下行拉深完成動畫的輸出。
2 4.3 MPG格式視頻動畫后序處理工作
由于保存的視頻動畫文件有多個,還有時捕捉時輸出一個動畫的時間是4秒,前文輸出的彎曲過程中的動畫都是不同位置的單個靜態(tài)照片的動畫,所以必須對彎曲過程的每個動畫都需要剪切處理,經(jīng)過視頻處理軟件(ExtraCut_gb視頻專用軟件.)調(diào)整為彎曲過程中的(000——999)所有動畫的時間輸出為0.9秒,然后經(jīng)過視頻處理軟件把處理好的動畫視頻文件進(jìn)行合并,合并成一個完整的動畫視頻文件,才能展示完整的模具工作動畫過程。如圖4-21所示:和并完成,動畫制作成功完成。
圖4-21
5.總結(jié)
以前沒有學(xué)習(xí)到這個動畫命令,感覺很困難,在老師給指點后并給定題目的前提下,通過學(xué)習(xí)動畫知識,翻閱圖書,上網(wǎng)查閱,基本熟悉和了解Pro/ENGINEER3.0的高級命令,在動畫的制作過程中失敗過很多次,在失敗的經(jīng)驗中就學(xué)會了不少知識,還有不少專業(yè)知識,識圖能力比以前強多了,思考問題的角度和出發(fā)點都有了不少進(jìn)步。
通過此次作業(yè)的完成,這讓我感覺學(xué)習(xí)不能馬虎,老師給提出了一些不足,這讓我感覺學(xué)習(xí)不能馬虎,也來不得半點虛偽,隨后謹(jǐn)記老師的教導(dǎo)和指導(dǎo)問題,回去自己繼續(xù)更改設(shè)計,爭取拿出一個更好的動畫讓老師看,讓同學(xué)們看看,為今后的學(xué)弟學(xué)妹們更好的學(xué)習(xí),在做了很多遍之后終于完成了動畫的制作,在做動畫的畢業(yè)論文的時候因為影響深刻,現(xiàn)在做還是記憶猶新,這次的學(xué)習(xí)是我的動手能力大大提高,只要努力學(xué)習(xí),沒有什么是困難的。
6.致 謝
時光如電,歲月如梭,三年的大學(xué)生活即將結(jié)束,而我也即將離開可敬的老師和熟悉的同學(xué)踏入不是很熟悉的社會中去。在這畢業(yè)之際,作為一名工科院校的學(xué)生,做畢業(yè)設(shè)計是一件必不可少的事情。
畢業(yè)設(shè)計是一項讓人增長知識的工作,它涉及的知識非常廣泛,很多都是書上沒有的東西,這就要靠自己去圖書館查找自己所需要的資料;還有很多設(shè)計計算,這些都要靠自己運用自己的思維能力去解決,可以說,沒有一定的毅力和耐心是很難完成這樣復(fù)雜的工作。
首先,我要感謝我的指導(dǎo)老師原紅玲老師,感謝老師的對我的指導(dǎo)和幫助。
其次,我要感謝的是我的同學(xué)們,在設(shè)計過程中遇到技術(shù)問題,通過與他們的商討和幫助,查閱資料,一一攻破難關(guān),助我順利地完成設(shè)計
謝謝你們的無私幫助和對我的鼓勵,相信以后的我會更加努力堅強。
7.參考文獻(xiàn)
1.《沖壓工藝與模具設(shè)計》 原紅玲主編 機械工業(yè)出版社
2.《沖壓模具圖冊》 楊占堯主編 高等教育出版社
3.《沖壓設(shè)計》 周玲主編 化學(xué)工業(yè)出版社
4.《proe2001高級開發(fā)實例》 黃圣杰、洪立群主編 電子工業(yè)出版社
5 劉建超,張寶忠主編,沖壓模具設(shè)計與制造[M]。北京:高等教育出版社,2004
6 王孝培主編,沖壓手冊[M]。北京:機械工業(yè)出版社,1990
7彭建聲、秦曉剛編著.模具技術(shù)問答[M]. 北京:機械工業(yè)出版社,1996
8 付宏生主編, 冷沖壓成形工藝與模具設(shè)計制造, 化學(xué)工業(yè)出版社, 2005年3月
第 23 頁 共 23 頁
目 錄
1. 緒論………………………………………………………………………………1
1.1 Pro/ENGINEER簡介 ……………………………………………………………1
1.1.1 Pro/ENGINEER的特點…………………………………………………………1
1.1.2 Pro/ENGINEER的模塊與功能 ………………………………………………2
2本次設(shè)計論述所要解決的問題……………………………………………………8
3 動畫制作總過程…………………………………………………9
3.1動畫的制作步驟簡介 ……………………………………………………………9
3.2帶壓邊裝置的后續(xù)拉深模模具動畫的制作進(jìn)度 ………………………………9
4 動畫詳細(xì)步驟……………………………………………………………………10
4.1 Pro/E 3.0動畫模塊的初步認(rèn)識………………………………………………10
4.2模具拉深動畫制作……………………………………………………………14
4.3 MPG格式視頻動畫后序處理工作………………………………………………21
5總結(jié) ………………………………………………………………………………23
6致謝……………………………………………………………………………24
7參考文獻(xiàn) …………………………………………………………………………25
河南機電高等??茖W(xué)校
畢業(yè)設(shè)計評語
學(xué)生姓名:康永強班級: 模具063 學(xué)號:061304338
題 目: 有壓邊裝置的后續(xù)拉深模運動仿真
綜合成績:
指導(dǎo)者評語:
康永強同學(xué)能按照任務(wù)書要求完成有壓邊裝置的后續(xù)拉深模具運動仿真,完成畢業(yè)設(shè)計任務(wù)過程中能正確查找設(shè)計資料,并能把所學(xué)的知識靈活運用,工作量達(dá)到要求,建議成績評定為良,可以提交答辯。
指導(dǎo)者(簽字):
2009年 5 月 10 日
畢業(yè)設(shè)計評語
評閱者評語:
康永強同學(xué)的畢業(yè)設(shè)計工作量達(dá)到要求,模具動作正確,能按照規(guī)范性要求書寫設(shè)計說明書。建議成績評定為良,可以提交答辯。
評閱者(簽字):
2009 年 5 月 15 日
答辯委員會(小組)評語:
答辯委員會(小組)負(fù)責(zé)人(簽字):
2009 年 月 日
材料工程系畢業(yè)生調(diào)查表
姓名
專業(yè)
班級
現(xiàn)工作單位
工作崗位
所從事專業(yè)工作
畢業(yè)以來工作經(jīng)歷
所學(xué)課程是否能夠滿足工作需要(打√)
是
否
希望調(diào)整和增設(shè)的課程
對教學(xué)環(huán)節(jié)及課程設(shè)置的建議
單位意見
(單位蓋章)
年 月 日
河南機電高等專科學(xué)校材料工程系
Annals of the CIRP Vol. 56/1/2007 -269- doi:10.1016/j.cirp.2007.05.062 Design of Hot Stamping Tools with Cooling System H. Hoffmann 1 (2), H. So 1 , H. Steinbeiss 1 1 Institute of Metal Forming and Casting, Technische Universitt Mnchen, Garching, Germany Abstract Hot stamping with high strength steel is becoming more popular in automotive industry. In hot stamping, blanks are hot formed and press hardened in a water-cooled tool to achieve high strength. Hence, design of the tool with necessary cooling significantly influences the final properties of the blank and the process time. In this paper a new method based on systematic optimization to design cooling ducts in tool is introduced. The optimization procedure was coupled with FE analysis and a specific evolutionary algorithm. Through this procedure each tool component was separately optimized. Subsequently, the hot stamping process was simulated both thermally and thermo-mechanically with the combination of optimized solutions. Keywords: Hot Stamping, Finite element method (FEM), Optimization 1 INTRODUCTION In recent years, weight reduction while maintaining safety standards has been strongly emphasized in the automotive industry for building new models. Hot stamping of high strength steels for automotive inner body panels offers the possibility of fuel saving by weight reduction and enhances passenger safety due to its higher strength. In order to achieve high strength by hot stamping with high strength steels, blanks should be heated above austenitic temperature and then cooled rapidly such that the martensitic transformation will occur. Normally, the tools are heated up to 200C without active cooling systems in serial production 1. However, in hot forming processes, the tool temperature must maintain below 200C to achieve high strength. So far, very few studies have been conducted regarding the design of cooling systems in a hot stamping tool. This paper presents a systematic method to design hot stamping tools with cooling systems in optimal and fast manners, in which the cooling system is optimized with the help of FE analysis and a specific evolutionary algorithm. Subsequently, a series of hot forming processes was simulated thermally as well as thermo-mechanically to observe the heat transfer and the cooling rate through the optimized cooling system. In the hot stamping process the tool motion requires relatively short time compared to the whole process time. Therefore, thermal analysis of a series of hot stamping processes without considering the tool motion could be sufficient with reasonable accuracy and shorter computation time for quick design of the hot stamping tools with cooling system. However, thermo- mechanical analyses that include the motion of the punch and the forming process are necessary to enhance the accuracy of the predictions. In this paper, a crash relevant hot stamped component of a vehicle and its corresponding prototype of hot stamping tool are introduced in chapter 2. And the optimization procedure with FE analysis and evolutionary algorithm is introduced in chapter 3. Subsequently, the results of thermal and thermo-mechanical analyses with the optimized hot stamping tool are presented. 2 COOLING OF HOT STAMPING TOOL 2.1 Motivation To enhance the economical production procedure and good characteristics of the formed parts, hot stamping tools need to be designed optimally. Therefore, the main objective of this study is the optimal designing of an economical cooling system in hot stamping tools to obtain efficient cooling rate in the tool. So far, very few researches have been conducted regarding the design of cooling systems in hot stamping tools. Therefore, an advanced design method is required. Also, an adequate simulation model is required to perform the optimization and investigation of tools and products as fast and accurate as possible. 2.2 Characteristics of 22MnB5 In direct hot forming process, the quenchable boron- manganese alloyed steel 22MnB5 is commonly used. Also, 22MnB5 is one of the representative materials of ultra high strength steels. Therefore, in this study, aluminium pre-coated 22MnB5 sheet (Arcelors USIBOR) was considered as the blank material. The material 22MnB5 has a tensile strength of 600MPa approximately at the delivery state, and the tensile strength can be significantly increased by hot stamping process. Higher tensile strength is achieved in the hot stamping process by a rapid cooling at least at the rate of 27C/s 2. The initial sheet of 22MnB5 consisting of ferritic-perlitic microstructure must be austenitized before forming process in order to achieve a ductility of blank sheet. As the austenite cools very fast during quenching process martensite transformation will occur. This microstructure with martensite provides the hardened final product with a high tensile strength up to 1500 MPa. 2.3 Tool component and test part The components of the prototype hot stamping tool and its kinematics are shown in Figure 1 and the initial blank and the proposed test part in Figure 2. The initial blank has the dimension of 170mm x 430mm x 1.75mm and the draw depth of the proposed test part is 30mm. -270- faceplate counter punch blank holder punch faceplate table table blank distance bolts die barells plunger Figure 1: Schematic of a test hot stamping tool. Initial thickness: 1.75mm 4 3 0 m m1 7 0 m m 4 0 0 m m 1 0 0 m m Draw depth: 30mm Figure 2: Initial blank and drawn part. 2.4 Cooling systems in stamping tools The tool must be designed to cool efficiently in order to achieve maximum cooling rate and homogeneous temperature distribution of the hot stamped part. Hence, a cooling system needs to be integrated into the tools. The cooling system with cooling ducts near to the tool contour is currently well known as an efficient solution. However, the geometry of cooling ducts is restricted due to constraints in drilling and also the ducts should be placed as near as possible for efficient cooling but sufficiently away form the tool contour to avoid any deformation in the tool during the hot forming process. To guarantee good characteristics of the drawn part, the whole active parts of the tool (punch, die, blank holder and counter punch) need to be designed to cool sufficiently. 3 DESIGNING OF COOLING SYSTEMS 3.1 Optimization with Evolutionary Algorithm x s a boring position minimum distance between loaded contour and cooling duct (x) between unloaded contour and cooling duct (a) between cooling ducts (s) loaded contour unloaded contour coolant bore Constraints sealing plug input parameters of cooling system number of cooling channels and coolant bores diameter of cooling duct evaluation criteria cooling intensity and uniform cooling Optimization (Evolutionary Algorithm) 1 solution per given input separate optimization Solution Figure 3: Optimization procedure for each tool. The optimization procedure for design of a cooling system is presented in Figure 3. In this procedure, cooling channels can be optimized in each tool by a specific Evolutionary Algorithm (EA), which was developed at ISF (Institut fr Spannende Fertigung, Universitt Dortmund, Germany) for the optimization of injection molding tools and adapted for design of cooling systems in hot stamping tools 3,4. As constraints for optimization, the available sizes of connectors and plugs, the minimum wall thicknesses as well as the nonintersection of drill holes were considered. The admissible minimal distance between cooling duct and unloaded/loaded tool contour (a/x) and the minimal distance between cooling ducts (s) were determined through FE analyses. Parameters of the cooling system such as the number of channels (a chain of sequential drill holes), drill holes per channel and the diameter of the holes for each tool component were also provided as input parameters to the optimization. These input parameters can be obtained from existing design guidelines or through FE simulations. Based on the input parameters initial solution is generated randomly by EA or manually by the user. From the initial solution, the EA generates new solutions by recombination of current solutions and modifying them randomly. The defined constraints were subsequently used for the correction of the generated solutions and the elimination of inadmissible solutions. All the generated solutions were evaluated by optimum criteria such as efficient cooling rate and uniform cooling. Finally, the best solution was selected as optimized cooling channels for a selected tool component. 3.2 Optimized cooling channels In our research, the selected diameters of ducts were 8mm and 12mm for punch, 8mm, 12mm and 16mm for die, 8mm and 10mm for counter punch and 8mm for blank holder. EA was used to place the cooling channels optimally according to the given input and constraints for each tool component. The optimized profiles of the channels for duct diameter of 8mm are shown in Figure 4. c a b 4 0 0 m m 100mm 145 mm pu n c h cou n ter p un ch die b l an k h o ld er a b a b c a b 5 1 0 m m 260 mm a b c 70mm 510mm ab 260 mm a 110mm cooling medium plug 380mm a 70mm 250 mm b c b direction of cut view Figure 4: Optimized cooling channels with 8mm duct diameter. 4 EVALUATION OF THE OPTIMUM COOLING CHANNEL DESIGNS The design of cooling channels was generated by EA for each tool component with different bore diameters and their cooling performances were evaluated by using FE simulations. 4.1 Thermal analysis In the design and development phase of hot stamping tools, it is important to estimate the hot stamping process qualitatively and quantitatively within a short time for -271- economic manufacturing of tools. For this purpose, two transient thermal simulations were carried out with ABAQUS/standard, which uses an implicit method. In this analysis steel 1.2379 was selected as a tool material. The simulation model comprises 4 tool components: punch, die, blank holder and counter punch. In Table 1, the selected combinations of tool components with optimized cooling channels are presented. The variant V1 is the combination of optimized tools with small cooling duct diameters, whereas variant V2 with large cooling duct diameters. V1 V2 punch counter punch blank holder 8mm 8mm 8mm 8mm 12mm 10mm 16mm 8mm diameter of cooling duct die Table 1: Combinations of designed tools for FE analysis. In order to represent a series of production processes, a number of cycles of the hot stamping processes were simulated as a cycle heat transfer analysis. The Figure 5 shows the FE model including boundary conditions. cooling duct (c) T c = 20C h c = 4700W/m 2 C tool (t) T t,0 = 20C environment (e) T e = 20C h e = 3.6W/m 2 C counter punch blank holder punch blank die blank (b) T b,0 = 850C blank - tool D c = f (d,P) Figure 5: FE model and boundary conditions. This hot forming process for the prototype part was designed such that the cycle time is 30 sec. In a cycle, the punch movement for forming requires 3 sec, the tool is closed for 17 sec for quenching the blank and it takes another 10 sec for opening the tool and locating the next blank on the tool. However, in this thermal analysis, the tool motion and deformation of the blank was not considered to reduce the computation time. Hence, only heat transfer analysis was performed in a closed tool. In thermal analysis, the quenching process takes places 20 sec instead of 17 sec, because the motion of punch was not considered. It was assumed that the blank has an initial homogeneous temperature (T b,0 ) of 850C due to free cooling from 950C during the transfer in environment. The initial tool temperature (T t,0 ) was assumed as 20C at the first cycle and changes from cycle to cycle. The temperature of the cooling medium (T c ) was assumed as room temperature. Beside the boundary conditions, the required material properties of 22MnB5 were obtained from hot tensile test conducted at LFT (Lehrstuhl fr Fertigungstechnologie, Universitt Erlangen-Nrnberg, Germany), with whom a joint research on hot stamping is being conducted 2. In this analysis, convection from blank and tools to the environment (h e ), conduction within each tool, convection from tool into cooling channels (h c ) and heat transfer from hot blank to tool (D c ) were considered. Here, D c , is the contact heat transfer coefficient (CHTC) which describes the amount of heat flux from blank into tools. This coefficient usually depends on the gap d between tool and blank and the contact pressure P. It increases usually as the contact pressure increases. However, in thermal analysis the pressure dependent CHTC was not available, but a gap dependent coefficient was used. CHTC was assumed as 5000W/m 2 C at zero distance between blank and tool (gap) and keeps constant until the gap increases beyond critical value. 4.2 Thermo-mechanical analysis Simulation of hot forming is different from conventional sheet metal forming simulation, in which the distribution of temperatures or stresses in tools is neglected. For fast and easy way to analyze the hot forming process the tool and the blank were modelled with shell elements as in other studies 5,6. In these studies, the temperatures could be distributed along the thickness of the shell element with the user-defined function of temperature, but the temperature within the tool was not considered. Also, in this simulation model the heating of tools in a series of hot stamping processes were not considered. Furthermore, the shell model for thermal contact problems is just adequate for relatively short contact time 6. Therefore, in our studies the tools and the blank were modelled with volume elements to simulate the sequential heat transfer in a series of processes. The thermo- mechanical simulation was conducted with ABAQUS/explicit. In comparison to the thermal analysis, the whole forming and quenching process were modelled and the dynamic temperature and stress responses of tools in contact with hot blank were simulated by using time-temperature dependent flow stress curves. The heat transfer could be more accurately expressed using pressure dependent CHTC at contact places which change during forming process. In addition, temperature dependent thermal conductivity and specific heat were also considered. However, in thermo-mechanical analysis, as the number of elements increases, the complexity of the FE problem significantly increases. In conventional forming simulation an adaptive mesh can be normally used to spare the simulation time and to obtain a more accurate solution in the contact area. However, adaptive mesh refinement causes instability during computation in thermo- mechanical analysis. Therefore, a refined mesh with higher punch velocity was considered to reduce the simulation time. The heat transfer coefficients were scaled accordingly to obtain the same heat flux 7. 5 SIMULATION RESULTS AND DISCUSSION 5.1 Thermal analysis Figure 6 shows the temperature changes in the tool components for 10 cycles at tool combination V1 and V2. T C 400 300 100 0 030100 0 300100 die punch t s t s V1 V2 Figure 6: Temperature changes in heat transfer analysis. The results show that the hottest temperatures of the tools at the end of each cycle do not change almost after some cycles. The obtained cooling rates of the blank at the hottest point from 850C to 170C are 40C/s with V1 and 33C/s with V2 at 10th cycle and these are greater than the required minimum cooling rate of 27C/s. Furthermore, V1 leads to a more efficient cooling performance than V2. Better cooling performance for V1 compared to V2 can be explained with the geometric restrictions and the minimal wall thickness. A cooling duct with small diameter can be placed closer to the tool surface in a convex area and the amount of the cooling channels can be increased additionally. Usually, the heat dissipation in the convex area is slower than in concave area 6. The result shows also that the temperature of convex area in the punch -272- cools down slower than the concave areas in the die. Due to this fact, it can be concluded that the efficient cooling is most desired at convex area. 5.2 Thermo-mechanical analysis The heat transfer with optimized tool components was simulated thermally at first. However, there was a simplification of a hot stamping process in thermal analysis. Therefore, a thermo-mechanical analysis for V1 was performed to observe the differences and the significance of modelling the punch movement. Temperature change curves at the hottest point from the end of the first cycle in the blank, die and punch are shown in Figure 7. The tool cooled further 10 sec after quenching and the temperature changes in the die and punch were presented for 30 sec. A coupled thermo- mechanical analysis was done using gap-pressure dependent CHTC. The results from thermal analysis shows a cooling rate of 92C/s from 850C to 170C in comparison to 75C/s from thermo-mechanical analysis. 400 300 100 0 die punch 05 20 1000 800 400 T C 200 Thermal analysis Thermo-mechanical analysis t s 15 blank 0 0 5 30 0 5 25 30t s10 202510 20t s T C Figure 7: Temperature changes in thermal and thermo- mechanical analysis (1th cycle). To verify the accuracy of a thermal analysis or to predict a serial production process more accurately a series of thermo-mechanical analysis was done. For this analysis the punch velocity was increased 10 times and 10 hot stamping processes were simulated. In Figure 8, the temperature change curves at the hottest point of the die and punch from a thermal and thermo-mechanical analysis are compared for 10 cycles. Finally, the temperature distributions in the blank at the end of the 10th cycle are shown in Figure 9. 400 300 100 0 TC 030ts100 030ts100 die punch thermal thermo-mechanical Figure 8: Temperature changes for 10 cycles. (b) T C (a) 130 60 102 74 88 116 T C 140 70 112 84 98 126 Figure 9: Temperature fields of blanks at the end of 10th cycle: (a) thermal and (b) thermo-mechanical analysis. In Figure 8, the temperature differences at the end of 10th cycle between the thermal and thermo-mechanical analyses were 7C in the die and 3C in the punch. Subsequently, the Figure 9 indicates that the maximum temperature of the blank from the thermal analysis is slightly greater than that of the thermo-mechanical about 10C. Nonetheless, the temperature fields of blanks from both analyses are very similar. As a consequence, the thermal analysis for a series of hot stamping processes is relatively accurate compared to the thermo-mechanical analysis. Furthermore, a thermal heat transfer analysis could be used to design and develop the hot stamping tools in the early phase due to its timesaving computation. 6 CONCLUSION AND FUTURE WORK A systematic method has been developed for optimizing the geometrical design of the cooling systems of hot stamping tools. This methodology was successfully applied to design of cooling channels in a prototype tool for efficient cooling performance. This indicates that the method can be used for designing cooling systems in other stamping tools as well. This paper presented both thermal and thermo- mechanical simulations to represent a series of hot stamping processes. The thermal analysis could be used for an optimization and investigation of hot stamping processes especially in the developing stage. However, a thermo-mechanical analysis is needed to predict more accurately but it is still time consuming to analyze the processes within adequate time period. To resolve this problem, an alternative simulation model will be further studied. Also, a more accurate contact condition for thermo-mechanical analysis remains to be studied. To validate this proposed method and its corresponding FE model, a prototype tool is currently being built and experiments will be carried out for validation. 7 ACKNOWLEDGMENTS We extend our sincere thanks to all joint project researchers of LFT and ISF. 8 REFERENCES 1 Sik
收藏