喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請(qǐng)放心下載,文件全都包含在內(nèi),有疑問咨詢QQ:1064457796
XXX中期匯報(bào)表
學(xué)生姓名
XXX
專 業(yè)
XXX
學(xué) 號(hào)
20140601312
設(shè)計(jì)(論文)題目
基于全向輪的AGV的移動(dòng)底盤結(jié)構(gòu)設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)前期工作小結(jié)
畢業(yè)論文中期報(bào)告(一):
本論文首先對(duì)AGV的研究理論及現(xiàn)狀進(jìn)行闡述。透過對(duì)文獻(xiàn)及AGV的研究現(xiàn)狀進(jìn)行分析,然后做了:
1.收集和整理資料,參閱部分收集到的資料,對(duì)論文命題有了初步的認(rèn)識(shí)。
2.完成開題報(bào)告,并透過指導(dǎo)老師和論文開題答辯小組審查。
3.查找與閱讀論文相關(guān)的適宜的英文文獻(xiàn),對(duì)其進(jìn)行翻譯并完成。
4.尋找實(shí)習(xí)單位,進(jìn)行為期一個(gè)月的實(shí)習(xí),實(shí)習(xí)資料涉及社會(huì)實(shí)踐和與論文相關(guān)的實(shí)地研究。5.實(shí)習(xí)期間寫下實(shí)習(xí)周記。
6.透過文獻(xiàn)研究和實(shí)踐研究,對(duì)論文命題有了較為全面的理解后,結(jié)合前人的研究成果,完成論文初稿的撰寫
存在的主要問題及解決辦法
到目前為止,在論文的寫作中主要有以下幾個(gè)問題:
1.對(duì)論文所涉及的知識(shí)認(rèn)識(shí)得不夠深刻。
2.研究中引入的數(shù)據(jù)不夠,對(duì)相關(guān)問題的支撐程度不足。
3.論文的各部分之間的銜接不夠強(qiáng),有的地方缺少邏輯。
導(dǎo)致上述問題主要有兩個(gè)原因
一是撰寫不夠嚴(yán)密。
二是是研究不夠深入,
針對(duì)這兩個(gè)原因,解決方法有:
1.對(duì)論文所涉及的知識(shí)以及前人的研究成果理解程度需要更加深刻,在這個(gè)基礎(chǔ)上才能得到有深度的結(jié)論。
2.需要對(duì)已完成的資料進(jìn)行多次審閱,從資料、結(jié)構(gòu)及用語等方面給予調(diào)整。
3.對(duì)于寫作過程中遇到的具體難題要多向指導(dǎo)老師請(qǐng)求援助。
下一步的主要研究任務(wù)、具體設(shè)想與安排
在往后的論文寫作中主要研究任務(wù)是在已完成的基礎(chǔ)上給予完善,具體的方法是參閱更多的相關(guān)研究文章,尤其是研究較為完整系統(tǒng)的書籍,深度提取其成果,結(jié)合本文的研究方向與思路來引用,其中具體資料包括會(huì)計(jì)環(huán)境研究時(shí)遇到的問題的解決對(duì)策的問題。針對(duì)此問題,需要更加具體的探索。另外,論文的進(jìn)度方面,在初稿基礎(chǔ)上進(jìn)行修改,爭取在六月初完成論文終稿。
指導(dǎo)教師意見
簽名:
2018 年 4 月 20 日
XXX中期情況檢查表
學(xué)院名稱: 機(jī)電工程學(xué)院 檢查日期: 2018 年 4 月 23 日
學(xué)生姓名
XXX
專 業(yè)
XXX
指導(dǎo)教師
XXX
設(shè)計(jì)(論文)題目
基于全向輪的AGV的移動(dòng)底盤結(jié)構(gòu)設(shè)計(jì)
工作進(jìn)度情況
進(jìn)展良好,圖畫的較慢,會(huì)適當(dāng)加速
是否符合任務(wù)書要求進(jìn)度
符合
能否按期完成任務(wù)
能
工作態(tài)度情況
(態(tài)度、紀(jì)律、出勤、主動(dòng)接受指導(dǎo)等)
工作積極性高,按時(shí)出勤,主動(dòng)接受指導(dǎo)態(tài)度良好,遵守紀(jì)律,進(jìn)展順利,因?yàn)橛萌S軟件畫圖,二維裝配圖進(jìn)展較慢,可適當(dāng)加速
質(zhì)量
評(píng)價(jià)
(針對(duì)已完成的部分)
存在問題和解決辦法
檢查人簽名
教學(xué)院長簽名
醫(yī)療AGV的實(shí)現(xiàn)
Marko Pedana *, Milan Gregora , Dariusz Plintab
A,齊利納大學(xué),機(jī)械工程學(xué)院,工業(yè)工程系,Unviz ZiNa 1,斯洛伐克共和國,伊利娜《大學(xué)bielsko - bia?a著的專業(yè)學(xué)院,機(jī)械工程和計(jì)算機(jī)科學(xué),生產(chǎn)工程部
B,大學(xué)教師bielsko - BIA?大學(xué),機(jī)械工程和計(jì)算機(jī)科學(xué)系的生產(chǎn)工程,波蘭
摘要
本文論述了自動(dòng)導(dǎo)引車(AGV)系統(tǒng)在醫(yī)院中的應(yīng)用。本文提供的要求和為醫(yī)療設(shè)備設(shè)計(jì)的AGV手推車技術(shù)規(guī)范。
第二部分介紹了應(yīng)用和效益。
最后介紹AGV在選定的衛(wèi)生保健設(shè)施的實(shí)施,是從計(jì)算機(jī)仿真中獲得,并用作驗(yàn)證工具。
還包括對(duì)這一實(shí)施的經(jīng)濟(jì)評(píng)價(jià)和與這項(xiàng)技術(shù)相關(guān)的進(jìn)一步投資的總結(jié)。作者2017,在愛思唯爾有限公司出版。Trcom 2017科學(xué)委員會(huì)負(fù)責(zé)人的同行評(píng)議:國際科學(xué)會(huì)議可持續(xù)的、現(xiàn)代的和安全的交通工具。
關(guān)鍵詞:AGV;醫(yī)療保?。桓倪M(jìn);仿真;效率
1.保健設(shè)施AGV
自動(dòng)導(dǎo)引車(AGV)或自動(dòng)導(dǎo)引車(SGV)已廣泛應(yīng)用于物料搬運(yùn)。幾十年(1)。近年來,移動(dòng)機(jī)器人的需求及其在醫(yī)院中的應(yīng)用因人口趨勢和醫(yī)療成本控制。對(duì)于醫(yī)療設(shè)施,這些自動(dòng)化系統(tǒng)是設(shè)計(jì)的。專門用于處理散裝物料、制藥藥品、實(shí)驗(yàn)室樣品、集中供料和運(yùn)輸。食品、臟碟子、洗衣房、廢物(生物、可回收)、生物醫(yī)學(xué)儀器等。通過自動(dòng)化這些物資獲得的,允許人力資源轉(zhuǎn)移到其他部門或活動(dòng)。
*對(duì)應(yīng)作者。Tel.:+421-41-53-2613;傳真:+421-41-53-1501。電子郵件地址:MARO.PANANGFSTROJ.UNIIA.SK作者2017。由愛思唯爾有限公司出版的,這是CC NC-ND許可證下的開放存取文章
(http://CopyVoCorMors.org/許可證/ NC ND/4/)。
Trcom 2017科學(xué)委員會(huì)負(fù)責(zé)人的同行評(píng)議:現(xiàn)代安全運(yùn)輸為可持續(xù)發(fā)展國際科學(xué)會(huì)議
666 Marko Pedan等。192工程(2017)665—670
自動(dòng)化系統(tǒng)每天工作24小時(shí),每周工作7天。自動(dòng)化解決方案可以簡化交通流材料在醫(yī)院,控制成本,減少工作量。醫(yī)院手術(shù)安裝要做到一些重要
要求
見圖1。這些要求和現(xiàn)代物流系統(tǒng)的使用對(duì)操作人員有很大的影響。Marko Pedan等人。192工程(2017)665—670—667
表1。設(shè)計(jì)AGV的技術(shù)規(guī)范。
技術(shù)參數(shù)值
尺寸127×63×32厘米
速度(最大)2米/秒
承載能力(最大)500公斤
電池容量100啊
運(yùn)輸原則將以特殊方式運(yùn)送醫(yī)療用品。AGV手推車的運(yùn)輸箱下切,然后抬起。圖3。描述物體運(yùn)輸?shù)脑?
設(shè)計(jì)AGV車。圖3。還顯示了必要的車輛和運(yùn)輸物體的關(guān)鍵尺寸。當(dāng)運(yùn)輸箱子時(shí)要觀察。
圖3。運(yùn)輸箱的最小尺寸和車輛與運(yùn)輸箱之間的距離(來源:我們的研究)。
三。AGV在醫(yī)療機(jī)構(gòu)病房的實(shí)施。
在選定的醫(yī)療機(jī)構(gòu)中,我們?cè)谝韵骂I(lǐng)域設(shè)計(jì)了AGV集成[6 ]:向病人室運(yùn)送食物。這一過程代表了從食物到達(dá),為外部公司提供,由AGV提供給廚房的食物運(yùn)輸,然后由醫(yī)護(hù)人員為病人分揀膳食,并將AGV的膳食分發(fā)給病人房間。房間設(shè)計(jì)了精確的??亢托遁dAGV食品的區(qū)域。收集和運(yùn)輸使用過的和干凈的衣物。醫(yī)療機(jī)構(gòu)有其外部公司,它帶走和洗滌臟衣服,然后送干凈的回來。該設(shè)施可以使用AGV的內(nèi)部運(yùn)輸服務(wù)。運(yùn)輸將包括裝載洗衣箱并將其運(yùn)送到期望位置(中央存儲(chǔ))。通過樓層的運(yùn)輸將由貨運(yùn)電梯運(yùn)送。廢物運(yùn)輸。廢物將從一個(gè)有標(biāo)記的空間和區(qū)域運(yùn)送到整個(gè)病房。
廢物將被收集在這些地方在特殊的盒子里。AGV自行將廢物轉(zhuǎn)移到臨時(shí)儲(chǔ)存廢物層中。
668 Marko Pedan等。192工程(2017)665—670
3.1。仿真軟件SIMIO中AGV集成的可視化
我們使用模擬軟件來驗(yàn)證我們建議的AGV在住院病房中的實(shí)現(xiàn)。為此,我們使用了軟件SIMIO,其中導(dǎo)入了真實(shí)對(duì)象和物理配置和保健設(shè)施。
圖4。顯示了數(shù)字環(huán)境下病房內(nèi)食物的運(yùn)輸過程[5,6]。AGV在這個(gè)模擬軟件遵循我們已經(jīng)映射和分析的病房流(即運(yùn)動(dòng))。醫(yī)務(wù)人員和醫(yī)療器材)。地板之間的運(yùn)輸將由貨運(yùn)電梯運(yùn)送,參見圖4a。然后將食物運(yùn)送到病人房間的指定位置[ 7 ],參見圖4B。
圖4。(a)通過貨運(yùn)電梯向住院病區(qū)運(yùn)送食物;在病房里卸載食物(來源:我們的研究)。
3.2。作為決策工具的仿真
醫(yī)療模擬可以被認(rèn)為是一種有效的工具、技術(shù)或方法〔8〕。醫(yī)護(hù)人員特別是決策者-董事和經(jīng)理-需要可靠的操作工具,支持他們?cè)跊Q策。
過程。這樣的技術(shù)和工具幫助他們降低成本,等待病人的時(shí)間,未來的預(yù)測。
病人到達(dá),并為他們提供可視化,使他們準(zhǔn)備工作人員和所有資源是
在正確的時(shí)間為病人提供高質(zhì)量的醫(yī)療服務(wù)是必要的[ 9 ]。這些工具也應(yīng)該
促進(jìn)決策證據(jù)和信息環(huán)境。仿真模型,特別是那些透明結(jié)構(gòu)的核心變量,可以很容易理解和信任的人與決策能力是支持決策、溝通、討論、想法、政策、方案的有用工具分析,從中他們可以獲得知識(shí),從中他們可以學(xué)習(xí)[ 10 ]。這也是我們的情況,因?yàn)槲覀冃枰獎(jiǎng)?chuàng)建一個(gè)真實(shí)的醫(yī)療設(shè)施的仿真模型,這將有助于管理者決定是否實(shí)施AGV系統(tǒng)。經(jīng)過醫(yī)院領(lǐng)導(dǎo)的多次采訪,我們創(chuàng)建了幾種模式變體。而仿真研究的創(chuàng)建和過程是非常廣泛的,在下一章中,我們帶來了總結(jié)最重要的結(jié)果和結(jié)果,這是醫(yī)療管理者(7)的關(guān)鍵。
3.3。從仿真運(yùn)行中獲得AGV集成的好處
隨著AGV集成,總1440分鐘的工作中我們能夠節(jié)省345分鐘(代表23.96%)
醫(yī)療助理(MA)每天見表2。這可能導(dǎo)致醫(yī)療助理的轉(zhuǎn)移或運(yùn)動(dòng)。
我們的立法允許他們的活動(dòng)和任務(wù)[5,6],這樣他們就可以花更多的時(shí)間和病人在一起。此外,我們
通過AGV系統(tǒng)集成,能夠減輕重型和危險(xiǎn)廢物的清洗和運(yùn)輸服務(wù)。除此之外,AGV還可以用于運(yùn)輸?shù)蛣┝康乃幤泛歪t(yī)療用品。安全衛(wèi)生要求。這種一體化將帶來與減少損害相關(guān)的利益,不合理和不正確的運(yùn)輸,以及物理上沉重的運(yùn)輸。另一個(gè)優(yōu)點(diǎn)是車輛可以。
每天工作24小時(shí),同時(shí)滿足充電要求。
Marko Pedan等人。192工程(2017)665—670—669
表2。醫(yī)護(hù)人員時(shí)間縮短。
時(shí)間(min) AGV集成后 時(shí)間減少 工作人員活動(dòng)當(dāng)前狀態(tài)
晨廁
150
150
150
血液檢驗(yàn)訂閱
300
300
0
清潔衣物交貨
75
0
75
早餐
60
0
60
午餐送達(dá)
90
0
90
下午廁所
300
300
0
晚餐準(zhǔn)備
30
30
0
晚餐送達(dá)
60
0
60
晚安廁所 300 300 0
骯臟衣物運(yùn)輸60 0 60
總計(jì)1440 1080 345
3.4。經(jīng)濟(jì)評(píng)價(jià)
最后一章介紹了在選定的醫(yī)療機(jī)構(gòu)中AGV整合的經(jīng)濟(jì)評(píng)價(jià)。在表3中可以看出項(xiàng)目的投資強(qiáng)度。必須說,費(fèi)用是根據(jù)初步分析計(jì)算的。只有大約,所以準(zhǔn)確地確定這樣一個(gè)項(xiàng)目的確切成本是需要的。附加分析〔6〕。由于項(xiàng)目持續(xù)時(shí)間短等原因,沒有進(jìn)行這些分析。衛(wèi)生保健設(shè)施的要求。表3。AGV集成的投資強(qiáng)度。
成本價(jià)格(歐元)評(píng)論
購買和設(shè)置AGV車50, 000
安裝和標(biāo)記AGV導(dǎo)航700地板標(biāo)志
醫(yī)院環(huán)境65000門、電梯和AGV接口的定制
總額115700
為了計(jì)算AGV運(yùn)行的每小時(shí)成本,我們投入了大約115700歐元的成本。從這些計(jì)算的成本,表示每月的運(yùn)營成本為4%(由AGV制造商指定),表示每月4628歐元的價(jià)值。從這個(gè)值,我們表達(dá)了一天所需的運(yùn)營成本。(154.27歐元/天)。在計(jì)算的最后階段,我們發(fā)現(xiàn)了運(yùn)行AGV的每小時(shí)成本。大約6歐元/小時(shí)。然后將這些值與住院病房的醫(yī)療助理的每小時(shí)費(fèi)用進(jìn)行比較(3.5歐元)。
從中我們可以看到AGV的運(yùn)營成本幾乎高出2倍,見表4。雖然這是一個(gè)
對(duì)運(yùn)營成本進(jìn)行粗略計(jì)算,對(duì)醫(yī)療設(shè)備管理人員是否給出了近似的概念。好想想這個(gè)技術(shù)的實(shí)施。表4。每小時(shí)運(yùn)行成本。運(yùn)營商每小時(shí)運(yùn)營成本(歐元)醫(yī)療助理3.5
AGV 6.43
670 Marko Pedan等。192工程(2017)665—670
4。結(jié)論
我們?cè)诒疚闹邢蚰榻B的案例研究是在主任的要求下進(jìn)行的。為了確定醫(yī)院AGV系統(tǒng)的潛在實(shí)施,醫(yī)療設(shè)施。在案例研究中,我們?cè)O(shè)計(jì)了AGV購物車和醫(yī)療機(jī)構(gòu)住院病房的運(yùn)輸方法。我們的運(yùn)輸方式在隨后創(chuàng)建的3D環(huán)境中,我們已經(jīng)模擬和驗(yàn)證了AGV的運(yùn)動(dòng)和建筑物的物理布局和病房內(nèi)的物質(zhì)流動(dòng)。最后的經(jīng)濟(jì)評(píng)估指出,AGV技術(shù)目前并不便宜,只能適當(dāng)?shù)挠糜诖蟮睦麧櫣芾碓O(shè)施。而一個(gè)特定類型的醫(yī)療設(shè)施的有效實(shí)施取決于許多因素并需要詳細(xì)說明。
世界頂級(jí)醫(yī)院已經(jīng)采用了這項(xiàng)技術(shù),它們想降低運(yùn)營成本和提高他們的醫(yī)療服務(wù)質(zhì)量,這可以使他們成本快速的回收。然而,從我們的觀點(diǎn)來看,斯洛伐克和它的醫(yī)療設(shè)施現(xiàn)在還沒有準(zhǔn)備好整合這項(xiàng)技術(shù)。這個(gè)醫(yī)療保健系統(tǒng)處于這樣一個(gè)境地,他無法從AGV系統(tǒng)的優(yōu)勢中獲益。
世界確實(shí)存在此項(xiàng)技術(shù)。AGV也是一項(xiàng)潛力巨大的技術(shù),但其具體應(yīng)用必須進(jìn)行分析和運(yùn)營。通過工業(yè)工程的幾種方法(如仿真)。因?yàn)樵S多醫(yī)療設(shè)施被嚇倒了特別是由于該技術(shù)的高購置成本,醫(yī)療保健管理者需要認(rèn)識(shí)到,新的現(xiàn)代技術(shù)主要是幫助醫(yī)護(hù)人員更有效地工作和學(xué)習(xí)。
另外,醫(yī)療服務(wù)質(zhì)量。如果我們的醫(yī)療機(jī)構(gòu)想要響應(yīng)技術(shù)驅(qū)動(dòng)的護(hù)理環(huán)境為未來的發(fā)展做好準(zhǔn)備,設(shè)計(jì)師不僅要設(shè)計(jì)保健設(shè)施建筑,還要考慮滿足病人和工作人員的要求,并且必須預(yù)測未來。
致謝
本文是KEGA 032 U-4/2015項(xiàng)目支持的研究部分。
參考文獻(xiàn):
[1] D. Plinta, M. Kraj?ovi?, Production system designing with the use of digital factory and augmented reality technologies, in: Advances in Intelligent Systems and Computing, vol. 350 (2016), ISSN 2194-5357, pp. 187-196. [2] B. Mi?ieta, M. Ga?o, M. Kraj?ovi?, Innovation performance of organization, in: Communications – Scientific letters of the University of ?ilina, vol. 16, no. 3A (2014), ISSN 1335-4205, pp. 112-118. [3] E.Weremeychik, Best Of 2014: How To Design A SmartHospital. (2014). Available on internet: . [4] M. Kraj?ovi?, et al., Intelligent manufacturing systems in concept of digital factory, in: Communications – Scientific letters of the University of ?ilina, vol. 15, no. 2 (2013), ISSN 1335-4205, pp. 77-87. [5] S. Chandel, Automatic Guided Vehicles serve food to patients at the Southmead Hospital. (2014). Available on internet: . [6] M. Gregor, M. Pedan, L. Mizeráková, "SMART" zdravotnícke zariadenia - vyu?itie modernych technológií v zdravotníctve, in: ProIN : dvojmesa?ník CEIT, ISSN 1339-2271, vol. 16, no. 5-6 (2015), pp. 21-24. [7] C. Pennington, Building a Smart Hospital that Stays Smart Well into the Future. (2012). Available on internet: . [8] ?tefánik, P. Grznár, B. Mi?ieta, Tools for Continual Process Improvement–Simulation and Benchmarking, in: Annals of DAAM for 2003 &Proc. of the 14th Intern. DAAAM Symposium: Intelligent manufacturing & automation: Focus on reconstruction and development, (2003), ISBN 978-3-901509-34-6, pp. 443-444. [9] M. Kraj?ovi?, A. ?tefánik, ?. Dulina, Logistics processes and systems design using computer simulation, in: Communications – Scientific letters of the University of ?ilina, vol. 18, no. 1A (2016), ISSN 1335-4205, pp. 87-94. [10]R. Webner, Hospital of the future: How the typical hospital will change with technology and shift to patient-centered care. (2014). Available on internet: . [11]L. Krko?ka, M. Gregor, M. Halu?ka, Tvorba a transformácia dát pre pou?itie v optimaliza?nych projektoch zdravotníckych zariadení, in: Metody i techniki kszta?towania procesów producyjnych, ISBN 978-83-65182-37-1, (2015), pp. 169-182. [12]S. Palajová, ?. Figa, M. Gregor, Simulation on manufacturing and logistics systems for the 21th century, in: Applied computer science : management of production processes, ISSN 1895-3735, vol. 7, no. 2 (2011), pp. 57-70. [13]J. Barjis, Healthcare simulation and its potential areas and future trends, in: SCS M&S Magazine, (2011), vol. 2, no.5, pp. 1-6.
Procedia Engineering 192 ( 2017 ) 665 670 Available online at 1877-7058 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the scientific committee of TRANSCOM 2017: International scientific conference on sustainable, modern and safe transport doi: 10.1016/j.proeng.2017.06.115 ScienceDirect TRANSCOM 2017: International scientific conference on sustainable, modern and safe transport Implementation of Automated Guided Vehicle system in healthcare facility Marko Pedan a *, Milan Gregor a , Dariusz Plinta b a University of Zilina, Faculty of Mechanical Engineering, Department of Industrial Engineering, Univerzitn 1, ilina 010 26, Slovak Republic b The University of Bielsko-Bia a, Faculty of Mechanical Engineering and Computer Science, Department of Production Engineering, Willowa 2, Bielsko-Bia a 43 309, Poland Abstract The article deals with the use of automated guided vehicle (AGV) system in the hospital. This paper provides the requirements and technical specifications of AGV cart designed for healthcare facility. The second part describes the application and benefits of AGV implementation in selected health care facility gained from computer simulation that is used as a verification tool. This part also contains the economic evaluation of this implementation and summary of further investments related to this technology. 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility ofthe scientific committee of TRANSCOM 2017: International scientific conference on sustainable, modern and safe transport. Keywords: AGV; healthcare; improvement; simulation; efficiency 1. AGV for healthcare facilities Automatic Guided Vehicles (AGV) or self-guided vehicles (SGV), have been widely used in material handling for decades 1. In these days, the demand for mobile robots and their use in hospitals has increased due to changes in demographic trends and medical cost control. For healthcare facilities, these automated systems are designed specifically for handling bulk material, pharmacy medicines, laboratories samples, central supply and transportation of food, dirty dishes, bed laundry, waste (biological, recyclable), biomedical instruments etc. Operating efficiency is gained by automating these supplies, which allows the transfer of human resources to other departments or activities. * Corresponding author. Tel.: +421-41-513-2713 ; fax: +421-41-513-1501. E-mail address: marko.pedanfstroj.uniza.sk 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the scientific committee of TRANSCOM 2017: International scientific conference on sustainable, modern and safe transport666 Marko Pedan et al. / Procedia Engineering 192 ( 2017 ) 665 670 Automated systems are working 24 hours a day, 7 days a week. Automated solution can streamline traffic flow of material in the hospital, control costs, reduce workload. Hospital operating installation have to fulfill some important requirements, see Fig. 1. These requirements and the use of modern logistics systems significantly affects the operation of the entire facility and its economy, improves the quality of patient care and increases their safety. 2 Fig. 1. The requirements for AGV integration in healthcare facility (Source: author). 2. The 3D design of AGV model for healthcare facilities The use of automated transport system (AGV) relieves hospital staff and allows them to spend most of their time on direct patient care. This increases safety in the hospital by minimizing potential injury to the staff when pushing heavy carts. The system monitors all major movements in the hospital and may prefer the most important jobs and tasks that can be completed first (e.g. surgical instruments transported first, then food for patients, bedding, eventually garbage, etc.) 3. AGV is equipped with sensors to detect obstacles that allow safe stop before hitting obstacles that might be in the way. The system and its vehicles is reliable, safe, efficient and cost-effective 4. Applications and commands are mediated through a user-friendly touch screen. The system is fully integrated for automatic control of doors, elevators, trolley washers, garbage dump truck, etc. Fig. 2. Low profile Automated Guided Vehicle for healthcare facilities (Source: our research). This designed 3D model of vehicle, see Fig. 2., has technical specifications specified in Table 1, and we will use it in the simulation model, which verifies its potential implementation in the hospital 5. 667 Marko Pedan et al. / Procedia Engineering 192 ( 2017 ) 665 670 Table 1. Technical specifications of designed AGV. Technical parameters Values Dimensions 127 x 63 x 32 cm Speed (max.) 2 m/s Load carrying capacity (max.) 500 kg Battery capacity 100 Ah The transport principle will be carried out in such a way that the medical supplies will be transported by special transport boxes that AGV cart undercuts and then lifts up. Fig. 3. describes the principle of object transportation using designed AGV cart. Fig. 3. also shows the key dimensions of the vehicle and transported objects which are necessary to be observed when transporting boxes. Fig. 3. The minimum dimensions of the transport box and the distance between the vehicle and transport box (Source: our research). 3. AGV implementation in a ward of healthcare facility. In selected healthcare facility we designed AGV integration in the following areas 6: Food transportation to the patient rooms. This process represents the provision of food transportation from the food arrival, which provides the external company, to the food transportation provided by AGVs to the kitchen, then sorting the meals for patients by healthcare staff and distributing the meals by AGVs to the patient rooms. The rooms have designed areas for precise stopping and unloading food from AGVs. Collection and transportation of used and clean laundry. Healthcare facility has their external company, which carries away and washes the dirty laundry and delivers the clean one back. The facility can use AGVs for the internal transport service. Transportation would consist of loading the laundry box and transporting it to the desired location (central storage). Transportation through the floors will be carried by freight elevator. Waste transportation. Waste will be transported from a well-marked spaces and areas from the whole ward. The waste will be collected on these places in special boxes. The AGVs will then take and move the waste to the temporary storage of waste to the base floor. 668 Marko Pedan et al. / Procedia Engineering 192 ( 2017 ) 665 670 3.1. The visualization of AGV integration in simulation software SIMIO We used simulation software for verification of our suggested implementations of AGVs in inpatient ward. For this purpose, we used software Simio in which we have imported the real objects and the physical disposition of healthcare facility. Fig. 4. shows the transportation process of food in the ward in digital environment 5,6. AGVs in this simulation software follows the inpatient ward streams that we have mapped and analyzed (i.e. the movement of medical staff and medical material). Transport between the floors will be carried by freight elevator, see Fig. 4a. AGVs will then transport the food to a designated locations in patient rooms 7, see Fig. 4b. Fig. 4. (a) food transportation to the inpatient ward by freight elevator; food unloading in patient room (Source: our research). 3.2. Simulation as a decision-making tool Simulation in healthcare can be considered as an effective tool, technique or method 8. Healthcare personnel especially decision makers - directors and managers - need reliable operational tool that supports them in decision- making process. Such techniques and tools help them in reductions of costs, waiting time of patients, future predictions of patients arrivals and provide them with visualization that enables them to prepare staff and all resources that are necessary for provision of high-quality healthcare service to the patients at the right time 9. These tools should also facilitate the decision making evidence and informative environment. Simulation models, especially those with transparent structure to their core variables that can be easily understood and trusted by people with decision-making competence, are a useful tool to support decision-making, communication, discussion, ideas, policies, scenario analysis, from which they can gain knowledge and from which they can learn 10. That was also our case, since we needed to create a simulation model of a real healthcare facility that will help the management to decide whether to implement the AGV system or not. After many interviews with the hospital leaders we have created several model variants. Whereas the creation and process of a simulation study is very extensive, in the next chapter, we bring and summarize the most important outcomes and results that were the key ones for healthcare managers 7. 3.3. The benefits from AGV integration gained from simulation runs With the AGV integration we were able to save 345 minutes of total 1440 minutes (representing 23.96 %) for medical assistant (MA) per day, see Table 2. This can result in the transfer or movement of medical assistants to activities and tasks that our legislation allows them 5,6, so they can spend more time with patients. Furthermore, we were able to relieve the cleaning and transporting services of heavy and dangerous waste by AGV system integration. Among other things, the AGV can be also used for transportation of medicines and medical supplies with low requirements on safety or hygiene. This integration will bring benefits associated with the reduction of damage, unreasonable and incorrect shipments, and physically heavy transport. Another advantage is that the vehicle can operate 24 hours a day while meeting the requirements of charge. 669 Marko Pedan et al. / Procedia Engineering 192 ( 2017 ) 665 670 Table 2. Healthcare staff time reduction. Staff Activity Current state (min.) After AGV integration (min.) Time reduction (min.) MA Morning toilet 150 150 0 Blood test subscription 300 300 0 Clean laundry delivery 75 0 75 Breakfast delivery 60 0 60 Lunch delivery 90 0 90 Afternoon toilet 300 300 0 Dinner preparation 30 30 0 Dinner delivery 60 0 60 Evening toilet 300 300 0 Dirty laundry transport 60 0 60 Total 1440 1080 345 3.4. Economic evaluation The final chapter brings the economic evaluation of AGV integration in selected healthcare facility. In Table 3 we can see the investment intensity of the project. It must be said that the costs are calculated according to initial analysis only approximately, so for precise determination of the exact amount of the costs of such a project there will be needed additional analyzes 6. These analyzes have not been carried out, due to the short duration of the project and other requirements from healthcare facility. Table 3. Investment intensity of AGV integration. Costs Price () Comments Purchasing and setting AGV cart 50, 000 Installing and marking AGV navigation 700 Floor marking Customization of hospital environment 65,000 Door, elevator and AGV interface Total 115,700 To calculate the hourly costs for running an AGVs we used input costs, which are around 115,700. From these calculated costs we expressed our monthly operating costs of 4 % (specified by the AGV manufacturer) 6, representing a value of 4,628/month. From this value we expressed the operating costs necessary for one day provision ( 154.27/day). In the last stage of the calculation, we found out the hourly cost of running the AGV at around 6.43/hour. These values were then compared to the hourly cost of medical assistant in inpatient ward ( 3.5) from which we can see that operating costs of AGV are almost 2 times higher, see Table 4. And although this is a rough calculation of operating costs, it gives an approximate idea to the managers of healthcare facilities whether it is good to think about the implementation of this technology. Table 4. Hourly operating costs. Operator Operating costs per hour () Medical assistant 3.5 AGV 6.43 670 Marko Pedan et al. / Procedia Engineering 192 ( 2017 ) 665 670 4. Conclusion Case study, which we have tried to introduce to you in this article was carried out at the request of the director of healthcare facility in order to identify the potential implementation of AGV system in the hospital. In the case study, we designed AGV cart and transport methods for inpatient ward of healthcare facility. This way of transport we subsequently created in a 3D environment where we have simulated and verified the movement of AGV in terms of the physical layout of the building and material flows in the ward. The final economic assessment then pointed out that the AGV technology is currently not cheap and is affordable only for bigger facilities managing in profit. Proper and effective implementation for a given type of healthcare facility depends on many factors and requires a detailed assessment and analysis 11. The worlds top hospitals, have already adopted this technology and therefore they are reducing operating costs and increasing the quality of their healthcare services, which lead them to rapid cost recovery. However, from our view, Slovakia and its healthcare facilities are not ready to integrate this technology now. The healthcare system is in a position in which he could not benefit from the advantages of AGV systems in a way that the world does 12. AGV is also a technology, which potential is high but its specific application must be analyzed through several methods of industrial engineering (e.g. simulation). Since many healthcare facilities are deterred particularly by high acquisition costs of this technology 13, healthcare managers need to realize that the purpose of the new, modern technology is mainly to help healthcare professionals to work more efficiently and improve the quality of healthcare services. If our healthcare facilities want to respond to technology-driven environment of care and be prepared for the future development, the designers must not only design healthcare facilities as a buildings. They need to meet the requirements of patients and staff, and must predict the future. Acknowledgements This paper is the part of research supported by project KEGA 032U-4/2015. References 1 D. Plinta, M. Krajovi, Production system designing with the use of digital factory and augmented reality technologies, in: Advances in Intelligent Systems and Computing, vol. 350 (2016), ISSN 2194-5357, pp. 187-196. 2 B. Miieta, M. Gao, M. Krajovi, Innovation performance of organization, in: Communications Scientific letters of the University of ilina, vol. 16, no. 3A (2014), ISSN 1335-4205, pp. 112-118. 3 E.Weremeychik, Best Of 2014: How To Design A SmartHospital. (2014). Available on internet: . 4 M. Krajovi, et al., Intelligent manufacturing systems in concept of digital factory, in: Communications Scientific letters of the University of ilina, vol. 15, no. 2 (2013), ISSN 1335-4205, pp. 77-87. 5 S. Chandel, Automatic Guided Vehicles serve food to patients at the Southmead Hospital. (2014). Available on internet: . 6 M. Gregor, M. Pedan, L. Mizerkov, SMART zdravotncke zariadenia - vyuitie modernch technolgi v zdravotnctve, in: ProIN : dvojmesank CEIT, ISSN 1339-2271, vol. 16, no. 5-6 (2015), pp. 21-24. 7 C. Pennington, B uilding a Smart Hospital that Stays Smart Well into the Future. (2012). Available on internet: . 8 tefnik, P. Grznr, B. Miieta, Tools for Continual Process ImprovementSimulation and Benchmarking, in: Annals of DAAM for 2003 &Proc. of the 14th Intern. DAAAM Symposium: Intelligent manufacturing & automation: Focus on reconstruction and development, (2003), ISBN 978-3-901509-34-6, pp. 443-444. 9 M. Krajovi, A. tefnik, . Dulina, Logistics processes and systems design using computer simulation, in: Communications Scientific letters of the University of ilina, vol. 18, no. 1A (2016), ISSN 1335-4205, pp. 87-94. 10 R. Webner, Hospital of the future: How the typical hospital will change with technology and shift to patient-centered care. (2014). Available on internet: . 11 L. Krkoka, M. Gregor, M. Haluka, Tvorba a transformcia dt pre pouitie v optimalizanch projektoch zdravotnckych zariaden, in: Metody i techniki ksztatowania procesw producyjnych, ISBN 978-83-65182-37-1, (2015), pp. 169-182. 12 S. Palajov, . Figa, M. Gregor, Simulation on manufacturing and logistics systems for the 21th century, in: Applied computer science : management of production processes, ISSN 1895-3735, vol. 7, no. 2 (2011), pp. 57-70. 13 J. Barjis, Healthcare simulation and its potential areas and future trends, in: SCS M&S Magazine, (2011), vol. 2, no.5, pp. 1-6.