秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)12 概率與統(tǒng)計(含解析)-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:238295626 上傳時間:2023-12-29 格式:DOC 頁數(shù):16 大?。?04.50KB
收藏 版權(quán)申訴 舉報 下載
新高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)12 概率與統(tǒng)計(含解析)-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共16頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)12 概率與統(tǒng)計(含解析)-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共16頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)12 概率與統(tǒng)計(含解析)-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共16頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《新高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)12 概率與統(tǒng)計(含解析)-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《新高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時集訓(xùn)12 概率與統(tǒng)計(含解析)-人教版高三數(shù)學(xué)試題(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(十二) 概率與統(tǒng)計 1.(2019·全國卷Ⅰ)為治療某種疾病,研制了甲、乙兩種新藥,希望知道哪種新藥更有效,為此進行動物試驗.試驗方案如下:每一輪選取兩只白鼠對藥效進行對比試驗.對于兩只白鼠,隨機選一只施以甲藥,另一只施以乙藥.一輪的治療結(jié)果得出后,再安排下一輪試驗.當(dāng)其中一種藥治愈的白鼠比另一種藥治愈的白鼠多4只時,就停止試驗,并認(rèn)為治愈只數(shù)多的藥更有效.為了方便描述問題,約定:對于每輪試驗,若施以甲藥的白鼠治愈且施以乙藥的白鼠未治愈,則甲藥得1分,乙藥得-1分;若施以乙藥的白鼠治愈且施以甲藥的白鼠未治愈,則乙藥得1分,甲藥得-1分;若都治愈或都未治愈,則兩種藥均得0分

2、.甲、乙兩種藥的治愈率分別記為α和β,一輪試驗中甲藥的得分記為X. (1)求X的分布列; (2)若甲藥、乙藥在試驗開始時都賦予4分,pi(i=0,1,…,8)表示“甲藥的累計得分為i時,最終認(rèn)為甲藥比乙藥更有效”的概率,則p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假設(shè)α=0.5,β=0.8. (ⅰ)證明:{pi+1-pi}(i=0,1,2,…,7)為等比數(shù)列; (ⅱ)求p4,并根據(jù)p4的值解釋這種試驗方案的合理性. [解] (1)X的所有可能取值為-1,0,1. P(X=-1)=(1-

3、α)β, P(X=0)=αβ+(1-α)(1-β), P(X=1)=α(1-β). 所以X的分布列為 X -1 0 1 P (1-α)β αβ+(1-α)(1-β) α(1-β) (2)(ⅰ)由(1)得a=0.4,b=0.5,c=0.1. 因此pi=0.4pi-1+0.5pi+0.1pi+1,故0.1(pi+1-pi)=0.4(pi-pi-1),即pi+1-pi=4(pi-pi-1). 又因為p1-p0=p1≠0,所以{pi+1-pi}(i=0,1,2,…,7)是公比為4,首項為p1的等比數(shù)列. (ⅱ)由(ⅰ)可得 p8=p8-p7+p7-p6+…+p1-p0+

4、p0 =(p8-p7)+(p7-p6)+…+(p1-p0) =p1. 由于p8=1,故p1=,所以 p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0) =p1 =. p4表示最終認(rèn)為甲藥更有效的概率.由計算結(jié)果可以看出,在甲藥治愈率為0.5,乙藥治愈率為0.8時,認(rèn)為甲藥更有效的概率為p4=≈0.003 9,此時得出錯誤結(jié)論的概率非常小,說明這種試驗方案合理. 2.(2020·全國卷Ⅱ)某沙漠地區(qū)經(jīng)過治理,生態(tài)系統(tǒng)得到很大改善,野生動物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動物的數(shù)量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣

5、區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動物的數(shù)量,并計算得xi=60,yi=1 200,(xi-)2=80,(yi-)2=9 000,(xi-)(yi-)=800. (1)求該地區(qū)這種野生動物數(shù)量的估計值(這種野生動物數(shù)量的估計值等于樣區(qū)這種野生動物數(shù)量的平均數(shù)乘以地塊數(shù)); (2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01); (3)根據(jù)現(xiàn)有統(tǒng)計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動物數(shù)量更準(zhǔn)確的估計,請給出一種你認(rèn)為更合理的抽樣

6、方法,并說明理由. 附:相關(guān)系數(shù)r=,≈1.414. [解] (1)由已知得樣本平均數(shù)=i=60,從而該地區(qū)這種野生動物數(shù)量的估計值為60×200=12 000. (2)樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù) r===≈0.94. (3)分層抽樣:根據(jù)植物覆蓋面積的大小對地塊分層,再對200個地塊進行分層抽樣. 理由如下:由(2)知各樣區(qū)的這種野生動物數(shù)量與植物覆蓋面積有很強的正相關(guān).由于各地塊間植物覆蓋面積差異很大,從而各地塊間這種野生動物數(shù)量差異也很大,采用分層抽樣的方法較好地保持了樣本結(jié)構(gòu)與總體結(jié)構(gòu)的一致性,提高了樣本的代表性,從而可以獲得該地區(qū)這種野生動物數(shù)量

7、更準(zhǔn)確的估計. 3.(2020·全國卷Ⅲ)某學(xué)生興趣小組隨機調(diào)查了某市100天中每天的空氣質(zhì)量等級和當(dāng)天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天): 鍛煉人次 空氣質(zhì)量等級    [0,200] (200,400] (400,600] 1(優(yōu)) 2 16 25 2(良) 5 10 12 3(輕度污染) 6 7 8 4(中度污染) 7 2 0 (1)分別估計該市一天的空氣質(zhì)量等級為1,2,3,4的概率; (2)求一天中到該公園鍛煉的平均人次的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表); (3)若某天的空氣質(zhì)量等級為1或2,則稱這天“空

8、氣質(zhì)量好”;若某天的空氣質(zhì)量等級為3或4,則稱這天“空氣質(zhì)量不好”.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān)? 人次≤400 人次>400 空氣質(zhì)量好 空氣質(zhì)量不好 附:K2=, P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 [解] (1)由所給數(shù)據(jù),該市一天的空氣質(zhì)量等級為1,2,3,4的概率的估計值如表: 空氣質(zhì)量等級 1 2 3 4 概率的估計值 0.43 0.27 0.21 0.09

9、(2)一天中到該公園鍛煉的平均人次的估計值為 (100×20+300×35+500×45)=350. (3)根據(jù)所給數(shù)據(jù),可得2×2列聯(lián)表: 人次≤400 人次>400 空氣質(zhì)量好 33 37 空氣質(zhì)量不好 22 8 根據(jù)列聯(lián)表得 K2=≈5.820. 由于5.820>3.841,故有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān). 4.(2017·全國卷Ⅰ)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(

10、μ,σ2). (1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望; (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查. ①試說明上述監(jiān)控生產(chǎn)過程方法的合理性; ②下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計算得=xi=

11、9.97,s==≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16. 用樣本平均數(shù)作為μ的估計值,用樣本標(biāo)準(zhǔn)差s作為σ的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進行檢查.剔除(-3,+3)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μ和σ(精確到0.01). 附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ

12、 因此P(X≥1)=1-P(X=0)=1-0.997 416≈0.040 8. X的數(shù)學(xué)期望E(X)=16×0.002 6=0.041 6. (2)①如果生產(chǎn)狀態(tài)正常,一個零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天內(nèi)抽取的16個零件中,出現(xiàn)尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,發(fā)生的概率很小,因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的. ②由=9.97,s≈0.212,得μ的估計值為=9.97,σ的估計值為=0.212,由樣本數(shù)據(jù)可以看

13、出有一個零件的尺寸在(-3,+3)之外,因此需對當(dāng)天的生產(chǎn)過程進行檢查. 剔除(-3,+3)之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為×(16×9.97-9.22)=10.02. 因此μ的估計值為10.02. x=16×0.2122+16×9.972≈1 591.134, 剔除(-3,+3)之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為×(1 591.134-9.222-15×10.022)≈0.008, 因此σ的估計值為≈0.09. 1.(2020·日照模擬)為評估設(shè)備M生產(chǎn)某種零件的性能,從設(shè)備M生產(chǎn)零件的流水線上隨機抽取100個零件作為樣本,測量其直徑后,整理得到下表: 直徑/m

14、m 57 58 60 61 62 63 64 65 66 67 68 69 70 72 合計 件數(shù) 1 1 3 5 6 19 33 18 4 4 2 1 2 1 100 經(jīng)計算,樣本的平均值μ=64,標(biāo)準(zhǔn)差σ=2.2,以頻率作為概率的估計值. (1)為評估設(shè)備M的性能,從樣本中任意抽取一個零件,記其直徑為X,并根據(jù)以下規(guī)則進行評估(P表示相應(yīng)事件的頻率): ①P(μ-σ<X≤μ+σ)≥0.682 7;②P(μ-2σ<X≤μ+2σ)≥0.954 5;③P(μ-3σ<X≤μ+3σ)≥0.997 3. 若同時滿足上述三個不等式

15、,則設(shè)備M的性能等級為甲;若滿足其中兩個不等式,則設(shè)備M的性能等級為乙;若僅滿足其中一個不等式,則設(shè)備M的性能等級為丙;若全部不滿足,則設(shè)備M的性能等級為丁.試判斷設(shè)備M的性能等級. (2)將直徑小于或等于μ-2σ或直徑大于μ+2σ的零件認(rèn)為是次品. (ⅰ)從設(shè)備M的生產(chǎn)流水線上任意抽取2個零件,計算其中次品個數(shù)Y的數(shù)學(xué)期望; (ⅱ)從樣本中任意抽取2個零件,計算其中次品個數(shù)Z的數(shù)學(xué)期望E(Z). [解] (1)因為P(μ-σ<X≤μ+σ)=P(61.8<X≤66.2)=0.8≥0.682 7, P(μ-2σ<X≤μ+2σ)=P(59.6<X≤68.4)=0.94<0.954 5,

16、 P(μ-3σ<X≤μ+3σ)=P(57.4<X≤70.6)=0.98<0.997 3, 所以設(shè)備M的性能等級為丙. (2)易知樣本中次品共6個,可估計設(shè)備M生產(chǎn)零件的次品率為0.06. (ⅰ)由題意可知Y~B(2,0.06),于是E(Y)=2×0.06=0.12. (ⅱ)Z的分布列為 Z 0 1 2 P 故E(Z)=0×+1×+2×==0.12. 2.(2020·濟寧模擬)某飲料公司計劃從A,B兩款新配方飲料中選擇一款進行新品推介,現(xiàn)對這兩款飲料進行市場調(diào)查,讓接受調(diào)查的受訪者同時飲用這兩款飲料,并分別對A,B兩款飲料進行評分.現(xiàn)對接受調(diào)查的100萬名受訪者

17、的評分進行整理,得到如下統(tǒng)計圖.從對以往調(diào)查數(shù)據(jù)分析可以得出如下結(jié)論:評分在[0,60)的受訪者中有20%會購買,評分在[60,80)的受訪者中有60%會購買,評分在[80,100]的受訪者中有90%會購買. (1)在受訪的100萬人中,求對A款飲料評分在60分以下的有多少萬人? (2)用頻率估計概率,現(xiàn)從受訪者中隨機抽取1人進行調(diào)查,試估計該受訪者購買A款飲料的可能性高于購買B款飲料的可能性的概率. (3)如果你是決策者,新品推介你會主推哪一款飲料,并說明你的理由. [解] (1)由A款飲料的評分餅狀圖,得對A款飲料評分在60分以下的頻率為0.05+0.15=0.2, ∴對A款

18、飲料評分在60分以下的有100×0.2=20(萬人). (2)設(shè)受訪者購買A款飲料的可能性高于購買B款飲料的可能性為事件C.記購買A款飲料的可能性是20%為事件A1;購買A款飲料的可能性是60%為事件A2;購買A款飲料的可能性是90%為事件A3;購買B款飲料的可能性是20%為事件B1;購買B款飲料的可能性是60%為事件B2;購買B款飲料的可能性是90%為事件B3. 則P(A1)=0.05+0.15=0.2,P(A2)=0.1+0.2=0.3,P(A3)=0.15+0.35=0.5, 用頻率估計概率得:P(B1)==0.1,P(B2)==0.35, P(B3)==0.55. ∵事件Ai

19、與Bj相互獨立,其中i,j=1,2,3, ∴P(C)=P(A2B1+A3B1+A3B2)=P(A2)P(B1)+P(A3)P(B1)+P(A3)P(B2)=0.3×0.1+0.5×0.1+0.5×0.35=0.255, ∴估計該受訪者購買A款飲料的可能性高于購買B款飲料的可能性的概率為0.255. (3)從受訪者對A,B兩款飲料購買期望角度看, A款飲料“選擇傾向指數(shù)”X的分布列為 X 0.2 0.6 0.9 P 0.2 0.3 0.5 B款飲料“選擇傾向指數(shù)”Y的分布列為 X 0.2 0.6 0.9 P 0.1 0.35 0.55 ∴E(X)=0.

20、2×0.2+0.6×0.3+0.9×0.5=0.67, E(Y)=0.2×0.1+0.6×0.35+0.9×0.55=0.725, 根據(jù)上述期望可知E(X)<E(Y),故新品推介應(yīng)該主推B款飲料. 3.(2020·濟寧模擬)某學(xué)校為了對教師教學(xué)水平和教師管理水平進行評價,從該校學(xué)生中選出300人進行統(tǒng)計,其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的60%,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的75%,對教師教學(xué)水平和教師管理水平都給出好評的有120人. (1)填寫下面對教師教學(xué)水平和教師管理水平評價的2×2列聯(lián)表: 對教師管理水平給出好評 對教師管理水平給出差評 合計 對

21、教師教學(xué)水平給出好評 對教師教學(xué)水平給出差評 合計 問:是否可以在犯錯誤的概率不超過0.1%的前提下,認(rèn)為對教師教學(xué)水平給出好評與對教師管理水平給出好評有關(guān)? (2)若將頻率視為概率,有4名教師參與了此次評價,設(shè)教師教學(xué)水平和教師管理水平全為好評的教師人數(shù)為隨機變量X. ①求教師教學(xué)水平和教師管理水平全為好評的教師人數(shù)X的分布列(概率用數(shù)值作答); ②求X的數(shù)學(xué)期望和方差. 附:K2=,其中n=a+b+c+d. P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2

22、.706 3.841 5.024 6.635 7.879 10.828 [解] (1)由題意可得對教師教學(xué)水平和教師管理水平評價的2×2列聯(lián)表為 對教師管理水平給出好評 對教師管理水平給出差評 合計 對教師教學(xué)水平給出好評 120 60 180 對教師教學(xué)水平給出差評 105 15 120 合計 225 75 300 K2=≈16.667>10.828, ∴可以在犯錯誤的概率不超過0.1%的前提下,認(rèn)為對教師教學(xué)水平給出好評與對教師管理水平給出好評有關(guān). (2)①教師教學(xué)水平和教師管理水平全為好評的概率為,且X的取值可以是0,1,2,3,4.

23、 P(X=0)==, P(X=1)=C××=, P(X=2)=C××=, P(X=3)=C××=, P(X=4)=C×=, ∴X的分布列為 X 0 1 2 3 4 P ②由于X~B,則E(X)=4×=,D(X)=4××=. 1.“過大年,吃水餃”是我國不少地方過春節(jié)的一大習(xí)俗.2019年春節(jié)前夕,A市某質(zhì)量檢測部門隨機抽取了100包某種品牌的速凍水餃,檢測其某項質(zhì)量指標(biāo)值,所得頻率分布直方圖如圖: (1)求所抽取的100包速凍水餃該項質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表); (2)(ⅰ)由頻率分布直方圖可以

24、認(rèn)為,速凍水餃的該項質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),利用該正態(tài)分布,求Z落在(14.55,38.45]內(nèi)的概率; (ⅱ)將頻率視為概率,若某人從該市某超市購買了4包這種品牌的速凍水餃,記這4包速凍水餃中該項質(zhì)量指標(biāo)值位于(10,30]內(nèi)的包數(shù)為X,求X的分布列和數(shù)學(xué)期望. 附:計算得所抽查的這100包速凍水餃的該項質(zhì)量指標(biāo)值的標(biāo)準(zhǔn)差σ=≈11.95. 若ξ~N(μ,σ2),則P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)≈0.954 5. [解] (1)所抽取的100包速凍水餃該項質(zhì)量指標(biāo)值的平均數(shù)為 =5×0.1+15×0.2+25×0.3+35×0

25、.25+45×0.15=26.5. (2)(ⅰ)∵Z服從正態(tài)分布N(μ,σ2),且μ=26.5,σ≈11.95, ∴P(14.55<Z≤38.45)=P(26.5-11.95<Z≤26.5+11.95)≈0.682 7, ∴Z落在(14.55,38.45]內(nèi)的概率是0.682 7. (ⅱ)根據(jù)題意得X~B,P(X=0)=C=; P(X=1)=C=;P(X=2)=C=; P(X=3)=C=;P(X=4)=C=. ∴X的分布列為 X 0 1 2 3 4 P ∴E(X)=4×=2. 2.插花是一種高雅的審美藝術(shù),是表現(xiàn)植物自然美的一種造型藝術(shù),與建

26、筑、盆景、造園等藝術(shù)形式相似,是最優(yōu)美的空間造型藝術(shù)之一.為了通過插花藝術(shù)激發(fā)學(xué)生對美的追求,增添生活樂趣,提高學(xué)生保護環(huán)境的意識,增加團隊凝聚力,某高校舉辦了以“魅力校園、花香溢校園”為主題的校園插花比賽.比賽按照百分制的評分標(biāo)準(zhǔn)進行評分,評委由10名專業(yè)教師、10名非專業(yè)教師以及20名學(xué)生會代表組成,各參賽小組的最后得分為評委所打分?jǐn)?shù)的平均分.比賽結(jié)束后,得到甲組插花作品所得分?jǐn)?shù)的頻率分布直方圖和乙組插花作品所得分?jǐn)?shù)的頻數(shù)分布表,如下所示: 分?jǐn)?shù)區(qū)間 頻數(shù) [72,76) 1 [76,80) 5 [80,84) 12 [84,88) 14 [88,92) 4

27、[92,96) 3 [96,100] 1 定義評委對插花作品的“觀賞值”如下所示. 分?jǐn)?shù)區(qū)間 [72,84) [84,92) [92,100] 觀賞值 1 2 3 (1)估計甲組插花作品所得分?jǐn)?shù)的中位數(shù)(結(jié)果保留兩位小數(shù)); (2)從40位評委中隨機抽取1人進行調(diào)查,試估計其對乙組插花作品的“觀賞值”比對甲組插花作品的“觀賞值”高的概率; (3)若該校擬從甲、乙兩組插花作品中選出一個用于展覽,從這兩組插花作品的最后得分來看該校會選哪一組?請說明理由(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表). [解] (1)設(shè)甲組插花作品所得分?jǐn)?shù)的中位數(shù)為x, 由頻率分布直方圖

28、可得甲組得分在前三個分?jǐn)?shù)區(qū)間的頻率之和為0.3, 在最后三個分?jǐn)?shù)區(qū)間的頻率之和為0.26, 故x在[84,88)內(nèi),且=,解得x=,故x≈85.82. (2)設(shè)“對乙組插花作品的‘觀賞值’比對甲組插花作品的‘觀賞值’高”為事件C,“對乙組插花作品的‘觀賞值’為2”為事件A2,“對乙組插花作品的‘觀賞值’為3”為事件A3,“對甲組插花作品的‘觀賞值’為1”為事件B1,“對甲組插花作品的‘觀賞值’為2”為事件B2,則 P(B1)=(0.010+0.025+0.040)×4=0.3, P(B2)=(0.110+0.040)×4=0.6, 由頻數(shù)分布表得,P(A2)==0.45,P(A3)

29、==0.1. 因為事件Ai與Bj相互獨立,其中i=2,3,j=1,2, 所以P(C)=P(A2B1+A3B1+A3B2) =P(A2)P(B1)+P(A3)P(B1)+P(A3)P(B2) =0.45×0.3+0.1×0.3+0.1×0.6=0.225, 所以評委對乙組插花作品的“觀賞值”比對甲組插花作品的“觀賞值”高的概率為0.225. (3)由頻率分布直方圖可知,甲組插花作品的最后得分約為 (0.010×74+0.025×78+0.040×82+0.110×86+0.040×90+0.020×94+0.005×98)×4=85.6. 由乙組插花作品所得分?jǐn)?shù)的頻數(shù)分布表,得

30、 分?jǐn)?shù)區(qū)間 頻數(shù) 頻率 [72,76) 1 0.025 [76,80) 5 0.125 [80,84) 12 0.300 [84,88) 14 0.350 [88,92) 4 0.100 [92,96) 3 0.075 [96,100] 1 0.025 所以乙組插花作品的最后得分約為 0.025×74+0.125×78+0.300×82+0.350×86+0.100×90+0.075×94+0.025×98=84.8. 因為85.6>84.8, 所以該校會選擇甲組插花作品. 3.2019年女排世界杯是由國際排聯(lián)(FIVB)舉辦的第13屆世

31、界杯賽事,比賽于2019年9月14日至9月29日在日本舉行,共有12支參賽隊伍.最終,中國女排以11戰(zhàn)全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.中國女排的影響力早已超越體育本身的意義,不僅是時代的集體記憶,更是激勵國人繼續(xù)奮斗、自強不息的精神符號.以下是本次世界杯最終比賽結(jié)果的相關(guān)數(shù)據(jù)(只列出了前6名). 排名 球隊 場次 積分 已賽 勝場 負場 1 中國 11 11 0 32 2 美國 11 10 1 28 3 俄羅斯 11 8 3 23 4 巴 西 11 7 4 21 5 日 本 11 6 5 19 6 韓

32、 國 11 6 5 18 (1)記每個隊的勝場數(shù)為變量x,積分為變量y,若y與x之間具有線性相關(guān)關(guān)系,試根據(jù)表中數(shù)據(jù)求出y關(guān)于x的線性回歸方程(系數(shù)精確到0.01),并由此估計本次比賽中勝場數(shù)是4的塞爾維亞隊的積分(結(jié)果保留整數(shù)); (2)中國已經(jīng)獲得2020年東京奧運會女排比賽的參賽資格,東京奧運會女排比賽一共有12支隊伍,比賽分為2個小組,每個小組進行單循環(huán)比賽.積分規(guī)則是以3∶0或者3∶1取勝的球隊積3分、負隊積0分,以3∶2取勝的球隊積2分、負隊積1分.根據(jù)以往比賽的戰(zhàn)績情況分析,中國隊與同組的某2支強隊比賽的比分以及相應(yīng)概率如下表所示: 比分 3∶0 3∶1 3

33、∶2 2∶3 1∶3 0∶3 概率 0.1 0.2 0.3 0.2 0.1 0.1 試求小組賽中,中國隊與這2支球隊比賽總積分的期望. 參考公式:線性回歸方程=x+中,=,=-,其中=xi,=y(tǒng)i. [解] (1)由表中數(shù)據(jù)可得 排名 1 2 3 4 5 6 勝場數(shù)x 11 10 8 7 6 6 積分y 32 28 23 21 19 18 所以==8,==23.5, xiyi=352+280+184+147+114+108=1 185, x=121+100+64+49+36+36=406,所以==≈2.591, 所以=

34、-≈23.5-2.591×8≈2.77, 故線性回歸方程為=2.59x+2.77. 當(dāng)x=4時,=2.59×4+2.77=13.13≈13, 故塞爾維亞隊的積分大約是13分. (2)由題意得,中國隊與這2支球隊中的每支球隊比賽時,積3分的概率為0.1+0.2=0.3,積2分的概率為0.3,積1分的概率為0.2,積0分的概率為0.1+0.1=0.2. 設(shè)中國隊與這2支球隊比賽的總積分為ξ,則ξ的可能取值為6,5,4,3,2,1,0. 則P(ξ=6)=C×0.32=0.09, P(ξ=5)=C×0.3×0.3=0.18, P(ξ=4)=C×0.3×0.2+C×0.32=0.21, P(ξ=3)=C×0.3×0.2+C×0.3×0.2=0.24, P(ξ=2)=C×0.3×0.2+C×0.22=0.16, P(ξ=1)=C×0.2×0.2=0.08, P(ξ=0)=C×0.2×0.2=0.04. 因此ξ的分布列如下所示: ξ 6 5 4 3 2 1 0 P 0.09 0.18 0.21 0.24 0.16 0.08 0.04 則E(ξ)=6×0.09+5×0.18+4×0.21+3×0.24+2×0.16+1×0.08+0×0.04=3.4.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!