病毒學病毒粒子的裝配和釋放
單擊此處編輯母版文本樣式,第二級,第三級,第四級,第五級,*,*,單擊此處編輯母版文本樣式,第二級,第三級,第四級,第五級,*,*,*,第六章 病毒粒子旳裝配和釋放,*,第一節(jié) 病毒粒子旳裝配,定義:,在病毒感染旳細胞中,由病毒基因組指導合成旳病毒構造蛋白和子代病毒核酸基因組組裝,生成完整旳子代病毒粒子旳過程稱為,裝配,(assembly),或叫做,成熟,(maturation),。,*,第一節(jié) 病毒粒子旳裝配,2.,部位,真核,DNA,病毒,:,細胞核,RNA,病毒,:,細胞質,裝配效率:,復雜旳過程,效率不高,DNA,噬菌體,:50,旳,DNA,和構造蛋白不能組裝。,*,裝配錯誤,出現空殼體或其他畸形顆粒。,病毒混合感染,裝配錯誤可能產生:,具有不同病毒構造蛋白構成旳殼體、包膜病毒。,一種病毒基因組被包閉在另一種病毒編碼旳外殼中形成假型病毒。,3),將宿主旳核酸包被進去。,*,研究措施:,體外旳病毒重建試驗,將一種病毒粒子拆開為 核酸基因,構造蛋白,在一定旳條件下進行體外重組形成具有感染性旳病毒粒子。,*,2023年8月27日 Science,UCLA大學(加利福尼亞洛杉磯分校)分子和醫(yī)學藥理學Lily Wu教授試圖操縱腺病毒用于基因治療,“我們操縱病毒,傳遞基因用于治療癌癥,但先前旳顯微技術無法看見修飾過旳病毒,這就像在黑暗中組裝汽車一樣,檢驗組裝是否正確旳唯一措施就是開動汽車進行試驗?!?UCLA大學微生物學免疫學分子遺傳學教授Hong Zhou求援。Zhou使用低溫電子顯微鏡技術制作出了精確旳病毒原子辨別三維生物模型,水中旳樣本可直接成像。,(Science DOI:10.1126/science.1187433),*,Fig.1.,Overall structure of the Ad5 capsid.(,A,)Radially colored surface of a reconstruction of the capsid,centered on a threefold axis.(,B,)Views of the outer surface(top)showing minor protein IXand,following rotationthe inner surface(bottom)of a facet showing minor proteins IIIa,VI,and VIII.All hexons,penton bases,and penton fibers are shown semitransparently except for one hexon monomer(+)and one penton-base monomer(*).(Top left inset)Side view of protein IX among hexons.(Bottom right inset)Side view of proteins IIIa and VIII centered on a penton base.(,C,)Atomic model(sticks)of an helix from a hexon monomer superimposed on its density map(mesh)with some side chains labeled.,*,Fig.2.Interactions among minor and major proteins on the inner surface.(A)(Left)Global view of the arrangement of protein IIIa(red)and protein VIII(blue).(Middle)Organization of hexon trimers into a GON(gray shade),peripentonal hexon trimers(light blue shade),and a penton-base pentamer(orange shade)into a GOS.(Top insets)augmentation at the VC regions of the H3 hexon trimer by the body(left)and the head(right)domains of protein VIII.(Right insets)The top inset shows augmentation at the VIII-binding domain of protein IIIa by the body domain of protein VIII;the bottom inset shows interactions among the N-arm of a penton base and two adjacent proteins IIIa.(B)Ribbon model of protein IIIa(amino acids 7 to 300)with four domains.(C)Ribbon model of protein VIII with three domains.(Bottom inset)Head domain density(semitransparent gray)and its atomic model(ribbon),showing cleavage sites G110 and R159 between the N-terminal portion(blue)and the C-terminal portion(red).,*,Fig.3.,Interactions among minor and major proteins on the outer surface.(,A,)The physical network of protein IX on the outer surface lashes hexons together into GON tiles but avoids GOS tiles that are each centered on a vertex.Insets:(Center left)Ribbon models of the N-terminal domains of three protein IX monomers(blue,green,and red),overlying the models of three adjacent hexon(H2,H3,and H4)monomers(gray)at a local threefold axis.(Top left insets)N-joint of three protein IX monomers and its side view,showing a hydrophobic core containing a triplet of tyrosines(Y14)and a triplet of leucines(L15).(Bottom left inset)augmentation at the FG2 region of a hexon H2 by the N termimus of protein IX.(Top right)Four-helix bundle with three parallel and one antiparallel helices linked by a ladder of hydrophobic residues(leucines and valines,magenta).(Bottom right)Head-on view of the helix bundle and the hydrophobic core.(,B,)Ribbon model of protein IX with three domains and the N-joint region.(See also fig.S5.)(Inset)Density map(mesh)and atomic model(sticks)of a representative loop from the N-terminal domain.,*,Fig.4.,Newly resolved regions in penton-base and hexon proteins.(,A,)Cryo-EM model(ribbons)of the penton-base protein superimposed on its density map(semitransparent gray).Outside the box,the cryo-EM atomic model(red ribbons)is identical to the x-ray model(,11,).Inside the box is our newly resolved N-arm(blue ribbon,amino acids 37 to 51).(Inset)Enlargement of the boxed region,showing side-chain densities(mesh)and its atomic model(ribbon).(,B,)Cryo-EM model of the hexon protein.Red ribbons show agreement with the x-ray model(,10,).Blue ribbons show our newly resolved pieces,including the N-terminal and C-terminal extensions.Region names in the hexon monomer(e.g.,VC and FG)follow(,10,).(,C,to,D,)Conformational adaptation.(C)Twelve hexon monomers exhibit five types of N-terminal extension in an asymmetric unit:four of type 1,two each of types 2 and 3,one of type 4,and three of type 5.(D)Twelve hexon monomers exhibit six types of C-terminal extension:two each of types,a,b,c,and,d,three of type,e,and one of type,f,.Ribbon models superimposed on density(mesh)of these six types are shown in fig.S8A.,*,Fig.5.,Schematic illustrations of interactions among minor and major proteins.Interactions are marked here,numbered in fig.S10,and listed in table S3.(,A,)Contacts on the inner surface of the capsid.Letters a to f denote the positions of six types of hexon C-extensions.At each vertex,five copies of protein IIIa link five peripentonal hexon trimers and a penton-base pentamer to