秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

二次曲線的仿射理論

上傳人:san****019 文檔編號:25579714 上傳時(shí)間:2021-07-27 格式:PPT 頁數(shù):13 大?。?90KB
收藏 版權(quán)申訴 舉報(bào) 下載
二次曲線的仿射理論_第1頁
第1頁 / 共13頁
二次曲線的仿射理論_第2頁
第2頁 / 共13頁
二次曲線的仿射理論_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《二次曲線的仿射理論》由會(huì)員分享,可在線閱讀,更多相關(guān)《二次曲線的仿射理論(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 一、二階曲線與無窮遠(yuǎn)直線的關(guān)系二、二階曲線的中心三、直徑與共軛直徑33 000A 雙曲型拋物型橢圓型相異的實(shí)點(diǎn)重合的實(shí)點(diǎn)共軛的虛點(diǎn)l= A33的符號仿射不變. 有心:(A 31, A32, A33); 無心:(A31, A32, 0)或(a12,a11,0)或(a22,a12,0).無窮遠(yuǎn)直線的極點(diǎn)稱為中心.對非退化二階曲線討論:中心、直徑與共軛直徑、漸近線 三、直徑與共軛直徑1. 定義(1). 直徑仿射定義解幾定義 無窮遠(yuǎn)點(diǎn)P的有窮遠(yuǎn)極線(過中心的通常直線). 一組平行弦中點(diǎn)的軌跡.(XY, ZP)= 1(2). 共軛直徑 直徑AB的共軛直徑為AB上無窮遠(yuǎn)點(diǎn)P 的極線EF(相互通過對方極點(diǎn)

2、的兩直徑). 直徑AB的共軛直徑為平行于AB的弦的中點(diǎn)軌跡EF.(XY, ZP)= 1仿射定義解幾定義(3). 共軛方向:與一對共軛直徑平行的方向.l不是任何二階曲線的直徑! 三、直徑與共軛直徑1. 定義2. 性質(zhì)(1). 有心二階曲線 (i) 的任一對共軛直徑與l一起, 構(gòu)成的一個(gè)自極三點(diǎn)形. (ii) 的每一直徑平分與其共軛直徑平行的弦, 且平行于共軛直徑與交點(diǎn)處的兩切線.(2). 拋物線 (i) 的直徑相互平行(l不是拋物線的直徑). (ii) 的任一直徑的極點(diǎn)為其與有窮遠(yuǎn)交點(diǎn)處切線上的無窮遠(yuǎn)點(diǎn). (iii) 的任一直徑平分其與有窮遠(yuǎn)交點(diǎn)處切線平行的弦. (XY, ZP )= 1. (i

3、v) 拋物線沒有共軛直徑, 將被一直徑平分的弦的方向稱為該直徑的共軛方向. 三、直徑與共軛直徑1. 定義2. 性質(zhì)3. 直徑的方程(1). 有心二階曲線 (i) 直徑的方程. 因?yàn)橹睆绞且缘闹行臑槭牡木€束中的直線. 以兩特殊直徑參數(shù)表示. 取兩無窮遠(yuǎn)點(diǎn)(1,0,0), (0,1,0), 其極線(對應(yīng)的直徑)方程為0: 0: 3232221122 3132121111 xaxaxal xaxaxal即0021 xSxS從而任一直徑l的方程為1 2: 0, (4.37)S Sl k k Rx x 注: k的幾何意義. (4.37)表示的直徑l方程可改寫為:001 321 xSkxSxS這說明l為

4、(1,k,0)的極線. 而(1,k,0)是l的共軛直徑上的無窮遠(yuǎn)點(diǎn), 從而, (4.37)中的參數(shù)k為直徑l的共軛方向(共軛直徑的斜率). 三、直徑與共軛直徑1. 定義2. 性質(zhì)3. 直徑的方程(1). 有心二階曲線 (ii) 兩直徑共軛的條件.設(shè)直徑0: 21 xSkxSl的共軛直徑為l.則l為l上的無窮遠(yuǎn)點(diǎn)(a12+ka22,(a11+ka12),0)的極線. 從而l的方程為.0)()( 1211 222121 kaaxSkaaxS即.0 21 xSkxS其中2212 1211 kaa kaak 為l的斜率, 即)40.4()0(0)( 332122211111222 Aaaaakkakk

5、a從而, 兩直徑共軛兩直徑的斜率滿足對合方程. 性質(zhì). 在以有心二階曲線的中心為束心的線束中, 直徑與共軛直徑的對應(yīng)是一個(gè)對合. 三、直徑與共軛直徑1. 定義2. 性質(zhì)3. 直徑的方程(1). 有心二階曲線(2). 拋物線利用中心坐標(biāo), 可直接寫出的直徑方程為.)(0 12113212111 bxaaybbxxaxa 即為常數(shù)或者.)(0 22123222112 bxaaybbxxaxa 即為常數(shù)(a12,a11,0)或(a22,a12,0) 四、漸近線 1. 定義. 二階曲線上無窮遠(yuǎn)點(diǎn)處的有窮遠(yuǎn)切線稱為其漸近線.注1. 等價(jià)定義:過中心的有窮遠(yuǎn)切線稱為漸近線.注2. 與漸近線平行的方向稱為漸

6、近方向.注3.雙曲線橢 圓有兩條實(shí)虛漸近線, 一對漸近方向;拋物線無漸近線.從而, 漸近線只對有心二階曲線討論. 四、漸近線1. 定義2. 性質(zhì)(1). 漸近線是自共軛的直徑.(2). 在以二階曲線的中心為束心的線束中, 漸近線是對合)40.4()0(0)( 332122211111222 Aaaaakkakka的兩條不變直線. (3). 有心二階曲線的兩漸近線調(diào)和分離其任一對相異的共軛直徑.3. 求漸近線方程設(shè)已知有心二階曲線 )1(0,0|,)(0: 333 1, AaaaxxaS ijjiijji jiij求的漸近線方程.雙曲線雙曲型對合橢 圓橢圓型對合 四、漸近線3. 求漸近線方程設(shè)已

7、知有心二階曲線)1(0,0|,)(0: 333 1, AaaaxxaS ijjiijji jiij求的漸近線方程.法一. 利用對合不變元素. 在)40.4()0(0)( 332122211111222 Aaaaakkakka中, 令k=k得不變元素方程為02 1112222 akaka此方程的兩根即為漸近線方向. 設(shè)兩根為ki(i=1,2), 分別代入021 xSkxS即可得兩漸近線方程. 評注:此法簡單且直接, 但若上述參數(shù)表示中的兩基線之一為漸近線, 則ki中應(yīng)有0或, 實(shí)際計(jì)算時(shí)容易丟失一條漸近線. 四、漸近線3. 求漸近線方程法二. 利用中心和漸近方向. 評注:此法簡單且直接, 只要求

8、出中心的非齊次坐標(biāo), 漸近線的方程即可直接寫出(一般可不分解為兩個(gè)一次式).得,聯(lián)立 003xS,02 222221122111 xaxxaxa這表示過原點(diǎn)的兩直線, 其上無窮遠(yuǎn)點(diǎn)即為與l的交點(diǎn), 從而它們平行于兩漸近線, 化為非齊次, 得.02 2 2212211 yaxyaxa設(shè)中心的非齊次坐標(biāo)為(, ). 則漸近線的方程為.0)()(2)( 22212211 yayxaxa 四、漸近線3. 求漸近線方程 法三. 利用切線方程. 漸近線為過中心的切線, 將中心P(A31,A32,A33)代入SppS=S2p, 即得漸近線方程. 現(xiàn)對此法進(jìn)行整理, 因?yàn)?評注:此法推導(dǎo)繁, 實(shí)用不繁, 因?yàn)樵谧鲱}時(shí), 首先判斷是否退化, |a ij|已有, 再判斷是否有心, A33也已知, 從而為已知. 332211 xxSxxSxxSS pppp 由于P為中心, 所以上式前二項(xiàng)的系數(shù)等于0, 從而.33 xxSS pp 將中心坐標(biāo)代入, 得.|)( 33333332323131 xaxAaAaAaS ijp 由此又得.| 33AaS ijpp 從而, 過中心的切線(漸近線)方程為.| 233323233 xaSAxaSAa ijijij 令./| 33Aaij得漸近線方程為.023 xS 今日作業(yè)P.143, 2, 3The Class is over. Goodbye!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!