2019-2020年高三數(shù)學(xué)《圓的一般方程》教案.doc
《2019-2020年高三數(shù)學(xué)《圓的一般方程》教案.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)《圓的一般方程》教案.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)《圓的一般方程》教案 教材分析: 教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。 難點(diǎn):二元二次方程與圓的一般方程的關(guān)系及求動(dòng)點(diǎn)的軌跡方程 教學(xué)過(guò)程: 1、情境設(shè)置:?jiǎn)栴}提出 方程表示什么圖形?方程表示什么圖形?(采用由特殊到一般,由具體到抽象的認(rèn)知方式) 對(duì)給出的方程通過(guò)配方,化成圓的標(biāo)準(zhǔn)方程的形式,第一個(gè)方程為,它表示以(1,-2)為圓心,2為半徑的圓;第二個(gè)方程為,由于不存在點(diǎn)的坐標(biāo)滿(mǎn)足這個(gè)方程,所以它不表示任何圖形。 2、探索研究: 方程在什么條件下表示圓? 配方得。(1)當(dāng)時(shí),方程表示以為圓心,為半徑的圓; (2)當(dāng)時(shí),方程表示一個(gè)點(diǎn) ; (3) 當(dāng)時(shí),方程不表示任何圖 形。 關(guān)于的二元二次方程 成為圓方程的充要條件是(1)和的系數(shù)相同且不等于0,即A=C0;(2)沒(méi)有這樣的二次項(xiàng),即B=0;(3) 。 對(duì)于圓的一般方程,要熟練地通過(guò)配方法,求出圓的圓心坐標(biāo)和半徑。 根據(jù)已知條件求圓的方程,仍然采用待定系數(shù)法,但要注意的是待定的方程是設(shè)標(biāo)準(zhǔn)方程還是設(shè)一般方程,這要根據(jù)已知條件而定。 3、思考交流 圓的標(biāo)準(zhǔn)方程和圓的一般方程各有什么特點(diǎn)? 圓的標(biāo)準(zhǔn)方程指出了圓心坐標(biāo)與半徑大小,幾何特征明顯;圓的一般方程表明圓的方程是一種特殊的二元二次方程,代數(shù)特征明顯。圓的一般方程與圓的標(biāo)準(zhǔn)方程可以相互轉(zhuǎn)化。 例1:已知方程x2+y2+2kx+4y+3k+8=0表示一個(gè)圓,求k的取值范圍。 分析:由二元二次方程成為圓方程的條件,得到關(guān)于k的不等式。 解:方程x2+y2+2kx+4y+3k+8=0表示一個(gè)圓, ∴,解得 ∴當(dāng)時(shí),方程x2+y2+2kx+4y+3k+8=0表示一個(gè)圓。 總結(jié):在圓的一般方程中,系數(shù)D、E、F必須滿(mǎn)足。 例2:求經(jīng)過(guò)三點(diǎn)A(1,-1)、B(1,4)、C(4,-2)的圓的方程。 解:設(shè)所求圓的方程為, A(1,-1)、B(1,4)、C(4,-2)三點(diǎn)在圓上,代入圓的方程并化簡(jiǎn),得 ,解得D=-7,E=-3,F(xiàn)=2 ∴所求圓的方程為。 總結(jié):待定系數(shù)法是求圓的方程最常見(jiàn)的方法,但是在求圓的方程時(shí)是設(shè)標(biāo)準(zhǔn)方程還是設(shè)一般方程,要由已知條件確定。一般地,如果由已知條件易求得圓心坐標(biāo)、半徑或需要利用圓心坐標(biāo)或半徑列方程,常選用標(biāo)準(zhǔn)方程;如果已知條件與圓心坐標(biāo)、半徑無(wú)直接關(guān)系,常選用一般方程。 例3、已知線(xiàn)段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓上運(yùn)動(dòng),求線(xiàn)段AB的中點(diǎn)M的軌跡方程。 解析:如圖點(diǎn)A運(yùn)動(dòng)引起點(diǎn)M運(yùn)動(dòng),而點(diǎn)A在已知圓上運(yùn)動(dòng),點(diǎn)A的坐標(biāo)滿(mǎn)足方程。建立點(diǎn)M與點(diǎn)A坐標(biāo)之間的關(guān)系,就可以建立點(diǎn)M的坐標(biāo)滿(mǎn)足的條件,求出點(diǎn)M的軌跡方程。 解:設(shè)點(diǎn)M的坐標(biāo)是(x,y),點(diǎn)A的坐標(biāo)是 ① 上運(yùn)動(dòng),所以點(diǎn)A的坐標(biāo)滿(mǎn)足方程,即 ② 把①代入②,得 練習(xí): 1、若(2m2+m-1)x2+(m2-m+2)y2+m+2=0的圖形表示一個(gè)圓,則m的值是___。 2、已知ABC的頂點(diǎn)坐標(biāo)分別是A(1,1)、B(3,1)、C(3,3),求ABC外接圓的方程。 3、過(guò)圓外一點(diǎn)Q向圓O:作割線(xiàn),交圓于A、B兩點(diǎn),求弦AB中點(diǎn)M的軌跡。 小結(jié): 1、“軌跡”與“軌跡方程”是不同的兩個(gè)概念,前者是圖形,要指出形狀、位置、大小(范圍)等特性;后者是方程(等式),不僅要給出方程,還要指出變量的取值范圍。 2、在探求點(diǎn)的軌跡時(shí),可先用信息技術(shù)工具探究軌跡的形狀,對(duì)問(wèn)題有一個(gè)直觀(guān)的了解,然后再?gòu)谋举|(zhì)上分析軌跡形成的原因,找出解決問(wèn)題的方法,制訂合理的解題策略。 課后作業(yè) (C組題)1. 圓上的點(diǎn)到直線(xiàn)的距離最大值是( ) A. B. C. D. (B組題)2將直線(xiàn),沿軸向左平移個(gè)單位,所得直線(xiàn)與圓相切,則實(shí)數(shù)的值為( ?。? A. B. C. D. (A組題)3. 已知圓和軸相切,圓心在直線(xiàn)上,且被直線(xiàn)截得的弦長(zhǎng)為,求圓的方程. 板書(shū)設(shè)計(jì) 圓的一般方程 課內(nèi)練習(xí) 例題 1、圓的一般方程為, 圓心坐標(biāo),半徑為。 方程表示圓的充要條件是 2、點(diǎn)與圓的位置關(guān)系: 在圓內(nèi) 在圓上 在圓外- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 圓的一般方程 2019 2020 年高 數(shù)學(xué) 一般方程 教案
鏈接地址:http://www.hcyjhs8.com/p-2560748.html